http://codeforces.com/problemset/problem/787/D

题目大意是给出一个有向图,有N个节点,初始节点在S,询问S到所有点最短路。边的读入方式有三种, 1 u v w  表示 u->v有一条边权为w的边, 2 v l r w ,表示v->[l,r]内的任意一个点支付w即可,

3 v l r w 表示从[l,r]内任意一个点到v支付w即可。直接构图的话可能会出现完全图,被卡死。

  一种巧妙的构图方式是,由这些个区间联想到线段树(然而我并没有想到),我们不妨对2,3两种类型建立两颗线段树 他们的叶子节点是共用的(1--N),对于2来说,如果节点v到树上的某个节点x有一条w的边,

就表示v到这个节点所对应的区间的点都可以支付w到达,并且在2的内部所有的父亲都向自己的儿子建立一条边权为0的边,这样如果v能到达x,说明v能到达x所有的子孙节点(支付w),对于3来说只不过反过来了一下思路一样。

  建完图之后跑最短路就好了,节点数大约N*10够了。

  

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define pii pair<int,int>
#define mid ((L+R)>>1)
#define lc (id<<1)
#define rc (id<<1|1)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define linf 0xffffffffffff
const int maxn=;
int N,Q,S,T0,T1,CNT;
int ch[maxn*][];
LL d[maxn*];
bool in[maxn*];
int tot,first[maxn*];
struct Edge{int v,w,next;}e[maxn*];
void add(int u,int v,int w){
e[tot].v=v;
e[tot].w=w;
e[tot].next=first[u];
first[u]=tot++;
}
void build1(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build1(ch[p][],L,mid),build1(ch[p][],mid+,R);
add(p,ch[p][],),add(p,ch[p][],);
}
} void build2(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build2(ch[p][],L,mid),build2(ch[p][],mid+,R);
add(ch[p][],p,),add(ch[p][],p,);
}
}
void insert1(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(v,id,w);
return;
}
if(l<=mid)insert1(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert1(ch[id][],mid+,R,v,l,r,w);
} void insert2(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(id,v,w);
return;
}
if(l<=mid)insert2(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert2(ch[id][],mid+,R,v,l,r,w);
}
void spfa(){
for(int i=;i<=CNT;++i)d[i]=linf;
memset(in,,sizeof(in));
queue<int>q;
q.push(S);
in[S]=;
d[S]=;
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=first[u];~i;i=e[i].next){
if(d[e[i].v]>d[u]+e[i].w){
d[e[i].v]=d[u]+e[i].w;
if(!in[e[i].v]){
q.push(e[i].v);
}
}
}
}
for(int i=;i<=N;++i) printf("%lld%c",d[i]==linf?-:d[i],i==N?'\n':' ');
}
int main()
{
memset(first,-,sizeof(first));
tot=;
scanf("%d%d%d",&N,&Q,&S);
CNT=N;
build1(T0,,N);
build2(T1,,N);
int opt,u,v,w,l,r;
while(Q--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
else{
scanf("%d%d%d%d",&v,&l,&r,&w);
if(opt==){
insert1(T0,,N,v,l,r,w);
}
else{
insert2(T1,,N,v,l,r,w);
}
}
}
spfa();
return ;
}
/*0 -1-112
0 -1 -1 12
*/

CF-787D-线段树建图+最短路的更多相关文章

  1. 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  2. BZOJ4383/LuoGuP3588 Pustynia/PUS 线段树建图优化

    我会告诉你我看了很久很久才把题目看懂吗???怀疑智商了 原来他给的l,r还有k个数字都是下标... 比如给了一个样例 l, r, k, x1,x2,x3...xk,代表的是一个数组num[l]~num ...

  3. HDU5669 Road 分层最短路+线段树建图

    分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) ​的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...

  4. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  5. Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)

    D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  6. POJ 2374 线段树建图+Dijkstra

    题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...

  7. CodeForces 786B Legacy(线段树优化建图+最短路)

    [题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...

  8. G. 神圣的 F2 连接着我们 线段树优化建图+最短路

    这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...

  9. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路

    B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...

随机推荐

  1. (zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks

    Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in  ...

  2. 【一】、搭建Hadoop环境----本地、伪分布式

    ##  前期准备 1.搭建Hadoop环境需要Java的开发环境,所以需要先在LInux上安装java 2.将    jdk1.7.tar.gz 和hadoop 通过工具上传到Linux服务器上 3. ...

  3. 【ASP.NET】The CodeDom provider type “Microsoft.CodeDom.Providers.DotNetCompilerPlatform.CSharpCodeProvider” could not be located

    一般是asp.net的项目在启动的时候会报这个错误. 页面显示成: 我推测的原因是由于project的build的输出属性改了, 非bin目录下, 导致这个问题. 解决这个问题的方案有两个: 1. 改 ...

  4. jQuery实现Marquee

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta na ...

  5. 无法启动此程序,因为计算机中丢失api-ms-win-crt-runtime-|1-1-0.dll

    今天想把自己电脑上的python2换成python3时,安装完python3后,命令行启动时需要出现了上述错误,在网上查了资料后应该是库文件遭到了破坏,于是我下了一个东西安装后就解决了,如果出现了此问 ...

  6. java中List,Set,Map用法以及区别

    List,Set,Map是否继承自Collection接口? 答:List,Set是,Map不是. Collection是最基本的集合接口,一个Collection代表一组Object,即Collec ...

  7. Python 学习笔记 多进程 multiprocessing--转载

    本文链接地址 http://quqiuzhu.com/2016/python-multiprocessing/ Python 解释器有一个全局解释器锁(PIL),导致每个 Python 进程中最多同时 ...

  8. 【二】jquery之基础概念与jquery对象与dom对象的区别及混合使用

    一:jquery基本概念 1.jquery是一个javascript框架,它是一个轻量级的js库 2.当下流行的js库有: jquery MooTools Prototype 3.$(ducoment ...

  9. python,函数的基本用法

    一.函数 函数的概念:对功能或者动作的封装可以帮我们把一段公共的代码提取出来 语法如下 def 函数名(形参): 函数体 函数名(实参) # 函数名() def yue(): print(" ...

  10. 字符串GZIP压缩解压

    c# /// <summary> /// 字符串压缩解压 /// </summary> public class Zipper { public static string C ...