CF-787D-线段树建图+最短路
http://codeforces.com/problemset/problem/787/D
题目大意是给出一个有向图,有N个节点,初始节点在S,询问S到所有点最短路。边的读入方式有三种, 1 u v w 表示 u->v有一条边权为w的边, 2 v l r w ,表示v->[l,r]内的任意一个点支付w即可,
3 v l r w 表示从[l,r]内任意一个点到v支付w即可。直接构图的话可能会出现完全图,被卡死。
一种巧妙的构图方式是,由这些个区间联想到线段树(然而我并没有想到),我们不妨对2,3两种类型建立两颗线段树 他们的叶子节点是共用的(1--N),对于2来说,如果节点v到树上的某个节点x有一条w的边,
就表示v到这个节点所对应的区间的点都可以支付w到达,并且在2的内部所有的父亲都向自己的儿子建立一条边权为0的边,这样如果v能到达x,说明v能到达x所有的子孙节点(支付w),对于3来说只不过反过来了一下思路一样。
建完图之后跑最短路就好了,节点数大约N*10够了。
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define pii pair<int,int>
#define mid ((L+R)>>1)
#define lc (id<<1)
#define rc (id<<1|1)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define linf 0xffffffffffff
const int maxn=;
int N,Q,S,T0,T1,CNT;
int ch[maxn*][];
LL d[maxn*];
bool in[maxn*];
int tot,first[maxn*];
struct Edge{int v,w,next;}e[maxn*];
void add(int u,int v,int w){
e[tot].v=v;
e[tot].w=w;
e[tot].next=first[u];
first[u]=tot++;
}
void build1(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build1(ch[p][],L,mid),build1(ch[p][],mid+,R);
add(p,ch[p][],),add(p,ch[p][],);
}
} void build2(int &p,int L,int R){
if(L==R) p=L;
else{
p=++CNT;
build2(ch[p][],L,mid),build2(ch[p][],mid+,R);
add(ch[p][],p,),add(ch[p][],p,);
}
}
void insert1(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(v,id,w);
return;
}
if(l<=mid)insert1(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert1(ch[id][],mid+,R,v,l,r,w);
} void insert2(int id,int L,int R,int v,int l,int r,int w){
if(L>=l&&R<=r){
add(id,v,w);
return;
}
if(l<=mid)insert2(ch[id][],L,mid,v,l,r,w);
if(r>mid)insert2(ch[id][],mid+,R,v,l,r,w);
}
void spfa(){
for(int i=;i<=CNT;++i)d[i]=linf;
memset(in,,sizeof(in));
queue<int>q;
q.push(S);
in[S]=;
d[S]=;
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=first[u];~i;i=e[i].next){
if(d[e[i].v]>d[u]+e[i].w){
d[e[i].v]=d[u]+e[i].w;
if(!in[e[i].v]){
q.push(e[i].v);
}
}
}
}
for(int i=;i<=N;++i) printf("%lld%c",d[i]==linf?-:d[i],i==N?'\n':' ');
}
int main()
{
memset(first,-,sizeof(first));
tot=;
scanf("%d%d%d",&N,&Q,&S);
CNT=N;
build1(T0,,N);
build2(T1,,N);
int opt,u,v,w,l,r;
while(Q--){
scanf("%d",&opt);
if(opt==){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
else{
scanf("%d%d%d%d",&v,&l,&r,&w);
if(opt==){
insert1(T0,,N,v,l,r,w);
}
else{
insert2(T1,,N,v,l,r,w);
}
}
}
spfa();
return ;
}
/*0 -1-112
0 -1 -1 12
*/
CF-787D-线段树建图+最短路的更多相关文章
- 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- BZOJ4383/LuoGuP3588 Pustynia/PUS 线段树建图优化
我会告诉你我看了很久很久才把题目看懂吗???怀疑智商了 原来他给的l,r还有k个数字都是下标... 比如给了一个样例 l, r, k, x1,x2,x3...xk,代表的是一个数组num[l]~num ...
- HDU5669 Road 分层最短路+线段树建图
分析:(官方题解) 首先考虑暴力,显然可以直接每次O(n^2) 的连边,最后跑一次分层图最短路就行了. 然后我们考虑优化一下这个连边的过程 ,因为都是区间上的操作,所以能够很明显的想到利用线段树来维 ...
- Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- POJ 2374 线段树建图+Dijkstra
题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...
- CodeForces 786B Legacy(线段树优化建图+最短路)
[题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...
- G. 神圣的 F2 连接着我们 线段树优化建图+最短路
这个题目和之前写的一个线段树优化建图是一样的. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路 之前这个题目可以相当于一个模板,直接套用就可以了. 不 ...
- B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路
B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...
随机推荐
- 深度学习课程笔记(三)Backpropagation 反向传播算法
深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...
- 正则匹配-URL-域名
DNS规定,域名中的标号都由英文字母和数字组成,每一个标号不超过63个字符,也不区分大小写字母.标号中除连字符(-)外不能使用其他的标点符号.级别最低的域名写在最左边,而级别最高的域名写在最右边.由多 ...
- SSH KEY 设置 目录在open ~ 根目录下的.ssh 里面
当我们从github或者gitlab上clone项目或者参与项目时,需要证明我们的身份.github.gitlab支持使用SSH协议进行免密登录,而SSH协议采用了RSA算法保证了登录的安全性.我们要 ...
- pymouse 点击指定坐标点
from pymouse import PyMouse mouse = PyMouse() mouse.click(,)
- javaSE习题 第三章 运算符、表达式和语句
问答: 1.下列System.out.printf的结果是什么? int a=100,x,y; x=++a; y=a--; System.out.printf("%d,%d,%d" ...
- 力扣(LeetCode)58. 最后一个单词的长度
给定一个仅包含大小写字母和空格 ' ' 的字符串,返回其最后一个单词的长度. 如果不存在最后一个单词,请返回 0 . 说明:一个单词是指由字母组成,但不包含任何空格的字符串. 示例: 输入: &quo ...
- 学习笔记38—国外appleID注册教程
国外appleid注册教程来啦….至于国外appleid有什么用处就不过多的介绍了,需要的人自然是知道,不知道的百度下.1.首先打开苹果appleid注册网址:https://appleid.appl ...
- Python中什么是变量
在Python中,变量的概念基本上和初中代数的方程变量是一致的. 例如,对于方程式 y=x*x ,x就是变量.当x=2时,计算结果是4,当x=5时,计算结果是25. 只是在计算机程序中,变量不仅可以是 ...
- Ubuntu 追加组,用户,设置免sudo密码输入
1,以root权限执行groupadd命令创建dev组. sudo groupadd dev 2,用adduser命令创建bpuser用户,--ingroup指定用户加入dev组. sud ...
- Linux 安装SSH
●centOS/redhat安装SSH 查询openssh server服务状态:systemctl status sshd 安装sshd命令: yum install openssh-server ...