蒲公英/分块入门九Byhzwer

辣鸡我复制粘贴题面格式极其丑陋,各位看原题面啦。

【题目描述】

在乡下的小路旁种着许多蒲公英,而我们的问题正是与这些蒲公英有关。

为了简化起见,我们把所有的蒲公英看成一个长度为n的序列 (a1​,a2​..an​),其中 ai​为一个正整数,表示第i棵蒲公英的种类编号。

而每次询问一个区间 [l,r],你需要回答区间里出现次数最多的是哪种蒲公英,如果有若干种蒲公英出现次数相同,则输出种类编号最小的那个。

注意,你的算法必须是在线的

【输入格式】
第一行两个整数 n,m,表示有n株蒲公英,m次询问。

接下来一行n个空格分隔的整数 a_i ,表示蒲公英的种类

再接下来m 行每行两个整数 l0,r0,我们令上次询问的结果为 x(如果这是第一次询问, 则 x=0)。

令 l=(l0+x-1)mod n+1,r=(r0+x-1)mod n+1如果 l>r,则交换 l,r 。

最终的询问区间为[l,r]。

【输出格式】
输出m 行。每行一个整数,表示每次询问的结果。

【题解思路】

某谷上写的一道黑题

传送门:hzwer的分块入门+WJMZBMR的区间众数解题报告

没什么心思写难题,毕竟我还有很多坑要填,但是分块入门九题就差这一题了有点不甘心。

蒲公英是强制在线的,而wjmzbmr的解题报告中涉及了单点修改和区间众数查询,同样也需要在线完成。

区间众数解题报告

考虑单独询问众数的操作

如果一个元素既不是集合a的众数也不在集合b中,那么它在a,b集合所有元素中出现的次数就是在a中出现的次数,不会比单独在集合a中出现的次数要多。

我们可以预处理出从块i到块j这些数的众数,然后按照分块的一般套路来写,只需枚举这些数并判断出现次数,块中优化可用二分。

考虑优化

我们需要在O(1)时间内回答[l,r]中有几个x这样的问题,我们很自然的想到了类似前缀和的优化。设f[i][x]表示[0,i]区间内有多少个x然后对于区间[l,r]内x的个数,只需f[r,x] – f[l-1,x]。考虑如何优秀地预处理出f[i][x],那当然是分块。

同时对于每一个块b,预处理出A[b][i][x]:块b的前i个元素中x出现了多少次。可以通过每个块开一个表(什么表啊)来实现。

我真的没太懂开表实现blalala。

阔是,我萌还要搞一些操作,把这过东西搞成在线的。

考虑在线修改

对于每个块,不管怎么搞,我们需要维护每个值在其中出现了多少次和最大出现次数,同时用cnt[i]表示出现了i次的值有几个。

具体维护灰常容易,就那么暴力搞就行了。关于f[i][x],随时改变就是了。

至于代码,我代码跟上面的思路不太一样......(逃,留坑

【BZOJ2724】【Violet 6】蒲公英的更多相关文章

  1. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  2. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  3. bzoj2724: [Violet 6]蒲公英(离散化+分块)

    我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...

  4. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  5. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

  6. bzoj2724: [Violet 6]蒲公英(分块)

    传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...

  7. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

  8. BZOJ 2724: [Violet 6]蒲公英

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1633  Solved: 563[Submit][Status ...

  9. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  10. BZOJ_2724_[Violet 6]蒲公英_分块

    BZOJ_2724_[Violet 6]蒲公英_分块 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod ...

随机推荐

  1. 加快cin读取速度

    cin在读取大量数据时会比C里的scanf慢很多,但这并不是cin"无能",而是C++为了兼容C,对cin做了scanf的同步,只要关闭这个同步,cin就会有不弱于scanf的速度 ...

  2. Python全栈-库的操作

    一.系统数据库 安装数据库系统后,系统自带的数据库.通过mysql客户端连接数据库系统后,使用show命令可查看系统中存在的所有库: mysql> show databases; +------ ...

  3. 转:安装PHP出现make: *** [sapi/cli/php] Error 1 解决办法

    ext/iconv/.libs/iconv.o: In function `php_iconv_stream_filter_ctor':/home/king/PHP-5.2.13/ext/iconv/ ...

  4. EasyUI添加进度条

    EasyUI添加进度条 添加进度条重点只有一个,如何合理安排进度刷新与异步调用逻辑,假如我们在javascript代码中通过ajax或者第三方框架dwr等对远程服务进行异步调用,实现进度条就需要做到以 ...

  5. MySQL 0Day漏洞出现 该漏洞可以拿到本地Root权限

    2016年9月12日, legalhackers.com网站发布了编号为CVE-2016-6662的0day漏洞公告 .由于该漏洞可以获得MySQL服务器的Root权限,且影响MySql5.5.5.6 ...

  6. web前端利用leaflet生成粒子风场,类似windy

    wind.js如下: $(function() { var dixing = L.tileLayer.chinaProvider('Google.Satellite.Map', { maxZoom: ...

  7. vue之component

    因为组件是可复用的 Vue 实例,所以它们与 new Vue 接收相同的选项,例如 data.computed.watch.methods 以及生命周期钩子等.仅有的例外是像 el 这样根实例特有的选 ...

  8. JustOj 1032: 习题6.7 完数

    题目描述 一个数如果恰好等于它的因子之和,这个数就称为"完数". 例如,6的因子为1.2.3,而6=1+2+3,因此6是"完数". 编程序找出N之内的所有完数, ...

  9. jquery easyui datagrid 空白条处理 自适应宽高 格式化函数formmater 初始化时会报错 cannot read property 'width'||'length' of null|undefined

    1---表格定义好之后右侧可能会有一个空白条 这个空白条是留给滚动条的,当表格中的一页的数据在页面中不能全显示时会自动出现滚动条,网上有很多事要改源码才可以修改这个,但是当项目中多处用到时,有的需要滚 ...

  10. Kali linux创建和删除用户

    #创建用户 图形界面如此友好,直接点用户——添加用户——设置密码即可,如果切换帐号,同样点用户——切换用户——输入密码即可. #删除用户的指令比较复杂一些,这里我们找到了特别好的资源,简明有效. ht ...