题解:

莫比乌斯反演

设f[i]=Σgcd(i,j)%z==0

则f[i]=Σgcd(i,j)==zd

成莫比乌斯反演关系

代码:

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=;
ll ans1,ans2;
int x,y,z,tot,T,cnt,miu[N],flag[N],p[N];
void init()
{
miu[]=;
for (int i=;i<N;i++)
{
if (!flag[i])
{
miu[i]=-;
p[++tot]=i;
}
for (int j=;j<=tot;j++)
{
int k=p[j]*i;
if (k>=N)break;
flag[k]=;
if (i%p[j]==)
{
miu[k]=;
break;
}
miu[k]-=miu[i];
}
}
}
int main()
{
scanf("%d",&T);
init();
while (T--)
{
ans1=ans2=;
scanf("%d%d%d%d%d",&x,&x,&y,&y,&z);
if (!z)
{
printf("Case %d: 0\n",++cnt);
continue;
}
x/=z;y/=z;
if (x>y)swap(x,y);
for (int i=;i<=x;i++)ans1+=(ll)miu[i]*(x/i)*(y/i);
for (int i=;i<=x;i++)ans2+=(ll)miu[i]*(x/i)*(x/i);
printf("Case %d: %lld\n",++cnt,ans1-ans2/);
}
}

hdu1695的更多相关文章

  1. 【HDU1695】GCD(莫比乌斯反演)

    [HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...

  2. 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法

    [HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...

  3. hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

    /** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...

  4. hdu1695莫比乌斯反演模板题

    hdu1695 求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数 最后的结果f(k)=Σ(1<=x<=n/k)mu[x]* ...

  5. hdu1695 GCD2 容斥原理 求x属于[1,b]与y属于[1,d],gcd(x,y)=k的对数。(5,7)与(7,5)看作同一对。

    GCD Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Sub ...

  6. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  7. hdu1695(容斥 or 莫比乌斯反演)

    刚开始看题,想了一会想到了一种容斥的做法.复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿.完全不敢写. 然后想别的方法. 唉,最近精神有点问题,昨天从打完bc开始想到1点多 ...

  8. 莫比乌斯函数 && HDU-1695

    莫比乌斯函数定义: $$\mu(d)=\begin{cases}1 &\text{d = 1}\\(-1)^r &\text{$d=p_1p_2...p_r,其中p_i为不同的素数$} ...

  9. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  10. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

随机推荐

  1. JS中的弹窗问题confirm和prompt

    JavaScript-确认(confirm 消息对话框) confirm 消息对话框通常用于允许用户做选择的动作,如:“你对吗?”等.弹出对话框(包括一个确定按钮和一个取消按钮). 语法: confi ...

  2. MySQL中如何实现select top n ----Limit

    Mysql中limit的用法详解 在我们使用查询语句的时候,经常要返回前几条或者中间某几行数据,这个时候怎么办呢?不用担心,mysql已经为我们提供了这样一个功能. LIMIT 子句可以被用于强制 S ...

  3. Linux ----> debian中环境的常见配置

    环境: (debian 9)/(lubuntu18.0.4+virtualbox) 1.配置下载源: gedit /etc/apt/sources.list #163 deb http://mirro ...

  4. English trip V1 - B 19. Life of Confucius 孔子的生活 Teacher:Patrick Key:

    In this lesson you will learn to describe a daily routine. (日常生活) 课上内容(Lesson) 词汇(Key Word ) contrac ...

  5. English trip V1 - B 16. Giving Reasons 提供个人信息 Teacher:Lamb Key: Why/Because

    In this lesson you will learn how to give reasons for something you've done. 课上内容(Lesson) Why do peo ...

  6. webpack热更新

    文件地址:https://pan.baidu.com/s/1kUOwFkV 从昨天下午到今天上午搞了大半天终于把热更新搞好了,之前热更新有两个问题,第一个是不能保存表单状态.第二个是更新太慢,这次主要 ...

  7. 利用adb截图然后传到电脑

    首先配置好adb环境变量 然后adb devices查看是否连接手机,记得把手机调成开发者模式. 截屏 adb shell /system/bin/screencap -p 路径/文件名.后缀名 ad ...

  8. mac 配置homebrew

    1.终端下输入export PATH=/usr/local/bin:$PATH 2.echo $PATH 3.安装homebrew  地址:ruby -e "$(curl -fsSL htt ...

  9. Jupyter notebook 转 pdf [完整转换]

  10. 将maven项目托管到github

    1.下载安装git 并通过 git config --global user.name "",和git config --global user.email "" ...