目录

1 编写本文的初衷

2 具体实施

2.1 Redis持久化概念简介

2.2 获取指定Redis的AOF持久化文件

2.3 把Redis的持久化AOF文件转换为RDB文件


1 编写本文的初衷

因为目前实习工作需求,需要把服务器环境中所有Redis数据进行初步简单分析,即统计其中存储的每一个key所占内存的大小,以便作出清理不重要缓存数据的决策。

但是,由于从线上环境获得持久化文件为AOF文件,而不是RDB文件。RDB文件可以通过Rdbtools工具,来分析具体数据。但是AOF文件不能这样操作。

因此,就给我带来一个问题:如何通过AOF文件获取指定的RDB持久化文件呢?

于是,我通过查阅网上文章,获取的一个解决思路:单独在Redis中开启一个未使用过的端口服务,使用已得到的AOF文件替换该端口服务下自动生成的AOF文件;然后,重启该端口指定的Redis服务,即可把新的AOF文件中数据加载到Redis数据库中,最后在该端口服务客户端执行save或者bgsave命令,即可在指定路径下得到对应的RDB持久化文件。


2 具体实施

2.1 Redis持久化概念简介

Redis数据库进行持久化有两种方式:RDB持久化和AOF持久化。

那么,什么是RDB持久化呢?

RDB(Redis Database)持久化:可以将Redis在内存中的数据库状态保存到磁盘里面,避免数据意外丢失。RDB持久化既可以手动执行,也可以根据服务器配置选项定期执行,该功能可以将某个时间点上的数据库状态保存到一个RDB文件中。(PS:手动执行保存时,在客户端执行SAVE命令或者BGSAVE即可把当前所有数据保存到dump.rdb文件中,如果在线上执行,建议使用BGSAVE命令)

RDB文件具体功能:用于保存和还原Redis服务器所有数据库中的所有键值对数据。

那么,什么是AOF持久化呢?

AOF(Append Only File)持久化:与RDB持久化通过保存数据库中的键值对来记录数据库状态不同,AOF持久化是通过保存Redis服务器所执行的写命令来记录数据库状态的。AOF持久化功能的实现可以分为命令追加(append)、文件写入、文件同步(sync)三个步骤。

AOF文件具体功能:通过保存所有修改数据库的写命令请求来记录服务器的数据库状态。


2.2 获取指定Redis的AOF持久化文件

一般情况,都是获取限制环境的AOF文件,那么如何在线上环境找到AOF文件呢?(PS:因为时间原因,可能忘记存储在哪里,所以以下提供一个搜索命令,方便操作)

  1. sudo find / -name '*.aof' # 此命令用于查找系统上所有以aof为后缀的文件 

通过该命令,查看具体文件的路径信息,即可确认自己需要获取的AOF文件。

确定后,通过一下命令把指定AOF文件拷贝到本地主机上:

  1. scp liuzhen@172.160.12.16:/home/liuzhen/prod_redis_data/redis/redis-appendonly.aof . # 从服务器复制远程文件到本地当前所在根目录

2.3 把Redis的持久化AOF文件转换为RDB文件

关于redis.conf文件中配置aof持久化操作信息简单介绍

(1)找到redis.conf文件,设置其中的字段属性:

  1. appendonly no ——> appendonly yes

此处也可以在redis客户端,使用指令来完成修改:

  1. redis 127.0.0.1:6379> config set appendonly yes
  2.  
  3. OK
  4.  
  5. redis 127.0.0.1:6379> BGREWRITEAOF # 用于重写生成aof文件
  6.  
  7. Background append only file rewriting started

此选项为aof功能的开关,默认为“no”,可以通过“yes”来开启aof功能

只有在“yes”下,aof重写/文件同步等特性才会生效

(2)在redis.conf文件中,指定aof文件的名称

  1. appendfilename "appendonly.aof" # 这是文件中默认的配置名称,也可以自己修改指定的文件名称

(3)在redis.conf文件中,确认 aof操作中文件同步策略

配置默认结果:

  1. # appendfsync always
  2.  
  3. appendfsync everysec
  4.  
  5. # appendfsync no

即选用everysec,具体意思:

1. no:表示等操作系统进行数据缓存同步到磁盘.

2. always:表示每次更新操作后手动调用fsync() 将数据写到磁盘.

3. everysec:表示每秒同步一次.一般用everysec

(4)在redis.conf文件中,确认 aof-rewrite期间,appendfsync是否暂缓文件同步

配置默认结果:

  1. no-appendfsync-on-rewrite no

具体意思:

"no"表示“不暂缓”,“yes”表示“暂缓”,默认为“no”

(5)在redis.conf文件中,确认 aof文件rewrite触发的最小文件尺寸(mb,gb),以及 相对于“上一次”rewrite,本次rewrite触发时aof文件应该增长的百分比

配置默认结果:

  1. auto-aof-rewrite-percentage 100
  2.  
  3. auto-aof-rewrite-min-size 64mb

具体实施步骤:

(1) 创建一个新的redis.conf文件,该文件命名可采用redis_port.conf形式,例如:redis_6391.conf。该文件中内容起初完全何Redis默认的redis.conf文件中内容一致

(2) 修改redis_6391.conf指定的port值,在文件中搜索port把默认的6379修改为6391

(3) 修改redis_6391指定的dir值,在文件中搜索dir把默认的".\"改为自己要存放文件的具体路径。该路径用于存放RDB文件和AOF文件

(4) 修改redis_6391指定的appendfilename值,在文件中搜索appendfilename把默认的"appendonly.aof"改为自己想要定义的文件名称,该文件即为AOF文件的最终名称

(5) 修改redis_6391指定的dbfilename值,在文件中搜索dbfilename把默认的"dump.rdb"改为自己想要定义的文件名称,该文件即为RDB文件的最终名称

(6) 此步骤最重要,修改redis_6391指定的appendonly值,在文件中搜索appendonly把默认的"no"改为"yes"。这句配置意思是Redis服务重启后,默认不加载AOF持久化文件恢复数据,而是去找RDB持久化文件恢复;如果修改为"yes"后,发现有AOF文件,会首先加载AOF文件恢复数据

以下给出我本机修改后的redis_6391.conf文件中具体配置代码:

  1. # Redis configuration file example
  2.  
  3. # Note on units: when memory size is needed, it is possible to specify
  4. # it in the usual form of 1k 5GB 4M and so forth:
  5. #
  6. # 1k => 1000 bytes
  7. # 1kb => 1024 bytes
  8. # 1m => 1000000 bytes
  9. # 1mb => 1024*1024 bytes
  10. # 1g => 1000000000 bytes
  11. # 1gb => 1024*1024*1024 bytes
  12. #
  13. # units are case insensitive so 1GB 1Gb 1gB are all the same.
  14.  
  15. ################################## INCLUDES ###################################
  16.  
  17. # Include one or more other config files here. This is useful if you
  18. # have a standard template that goes to all Redis server but also need
  19. # to customize a few per-server settings. Include files can include
  20. # other files, so use this wisely.
  21. #
  22. # Notice option "include" won't be rewritten by command "CONFIG REWRITE"
  23. # from admin or Redis Sentinel. Since Redis always uses the last processed
  24. # line as value of a configuration directive, you'd better put includes
  25. # at the beginning of this file to avoid overwriting config change at runtime.
  26. #
  27. # If instead you are interested in using includes to override configuration
  28. # options, it is better to use include as the last line.
  29. #
  30. # include /path/to/local.conf
  31. # include /path/to/other.conf
  32.  
  33. ################################ GENERAL #####################################
  34.  
  35. # By default Redis does not run as a daemon. Use 'yes' if you need it.
  36. # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
  37. daemonize no
  38.  
  39. # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
  40. # default. You can specify a custom pid file location here.
  41. pidfile /var/run/redis.pid
  42.  
  43. # Accept connections on the specified port, default is 6391.
  44. # If port 0 is specified Redis will not listen on a TCP socket.
  45. port 6391
  46.  
  47. # TCP listen() backlog.
  48. #
  49. # In high requests-per-second environments you need an high backlog in order
  50. # to avoid slow clients connections issues. Note that the Linux kernel
  51. # will silently truncate it to the value of /proc/sys/net/core/somaxconn so
  52. # make sure to raise both the value of somaxconn and tcp_max_syn_backlog
  53. # in order to get the desired effect.
  54. tcp-backlog 511
  55.  
  56. # By default Redis listens for connections from all the network interfaces
  57. # available on the server. It is possible to listen to just one or multiple
  58. # interfaces using the "bind" configuration directive, followed by one or
  59. # more IP addresses.
  60. #
  61. # Examples:
  62. #
  63. # bind 192.168.1.100 10.0.0.1
  64. # bind 127.0.0.1
  65.  
  66. # Specify the path for the Unix socket that will be used to listen for
  67. # incoming connections. There is no default, so Redis will not listen
  68. # on a unix socket when not specified.
  69. #
  70. # unixsocket /tmp/redis.sock
  71. # unixsocketperm 700
  72.  
  73. # Close the connection after a client is idle for N seconds (0 to disable)
  74. timeout 0
  75.  
  76. # TCP keepalive.
  77. #
  78. # If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
  79. # of communication. This is useful for two reasons:
  80. #
  81. # 1) Detect dead peers.
  82. # 2) Take the connection alive from the point of view of network
  83. # equipment in the middle.
  84. #
  85. # On Linux, the specified value (in seconds) is the period used to send ACKs.
  86. # Note that to close the connection the double of the time is needed.
  87. # On other kernels the period depends on the kernel configuration.
  88. #
  89. # A reasonable value for this option is 60 seconds.
  90. tcp-keepalive 0
  91.  
  92. # Specify the server verbosity level.
  93. # This can be one of:
  94. # debug (a lot of information, useful for development/testing)
  95. # verbose (many rarely useful info, but not a mess like the debug level)
  96. # notice (moderately verbose, what you want in production probably)
  97. # warning (only very important / critical messages are logged)
  98. loglevel notice
  99.  
  100. # Specify the log file name. Also the empty string can be used to force
  101. # Redis to log on the standard output. Note that if you use standard
  102. # output for logging but daemonize, logs will be sent to /dev/null
  103. logfile ""
  104.  
  105. # To enable logging to the system logger, just set 'syslog-enabled' to yes,
  106. # and optionally update the other syslog parameters to suit your needs.
  107. # syslog-enabled no
  108.  
  109. # Specify the syslog identity.
  110. # syslog-ident redis
  111.  
  112. # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
  113. # syslog-facility local0
  114.  
  115. # Set the number of databases. The default database is DB 0, you can select
  116. # a different one on a per-connection basis using SELECT <dbid> where
  117. # dbid is a number between 0 and 'databases'-1
  118. databases 16
  119.  
  120. ################################ SNAPSHOTTING ################################
  121. #
  122. # Save the DB on disk:
  123. #
  124. # save <seconds> <changes>
  125. #
  126. # Will save the DB if both the given number of seconds and the given
  127. # number of write operations against the DB occurred.
  128. #
  129. # In the example below the behaviour will be to save:
  130. # after 900 sec (15 min) if at least 1 key changed
  131. # after 300 sec (5 min) if at least 10 keys changed
  132. # after 60 sec if at least 10000 keys changed
  133. #
  134. # Note: you can disable saving at all commenting all the "save" lines.
  135. #
  136. # It is also possible to remove all the previously configured save
  137. # points by adding a save directive with a single empty string argument
  138. # like in the following example:
  139. #
  140. # save ""
  141.  
  142. save 900 1
  143. save 300 10
  144. save 60 10000
  145.  
  146. # By default Redis will stop accepting writes if RDB snapshots are enabled
  147. # (at least one save point) and the latest background save failed.
  148. # This will make the user aware (in a hard way) that data is not persisting
  149. # on disk properly, otherwise chances are that no one will notice and some
  150. # disaster will happen.
  151. #
  152. # If the background saving process will start working again Redis will
  153. # automatically allow writes again.
  154. #
  155. # However if you have setup your proper monitoring of the Redis server
  156. # and persistence, you may want to disable this feature so that Redis will
  157. # continue to work as usual even if there are problems with disk,
  158. # permissions, and so forth.
  159. stop-writes-on-bgsave-error yes
  160.  
  161. # Compress string objects using LZF when dump .rdb databases?
  162. # For default that's set to 'yes' as it's almost always a win.
  163. # If you want to save some CPU in the saving child set it to 'no' but
  164. # the dataset will likely be bigger if you have compressible values or keys.
  165. rdbcompression yes
  166.  
  167. # Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
  168. # This makes the format more resistant to corruption but there is a performance
  169. # hit to pay (around 10%) when saving and loading RDB files, so you can disable it
  170. # for maximum performances.
  171. #
  172. # RDB files created with checksum disabled have a checksum of zero that will
  173. # tell the loading code to skip the check.
  174. rdbchecksum yes
  175.  
  176. # The filename where to dump the DB
  177. dbfilename dump_6391.rdb
  178.  
  179. # The working directory.
  180. #
  181. # The DB will be written inside this directory, with the filename specified
  182. # above using the 'dbfilename' configuration directive.
  183. #
  184. # The Append Only File will also be created inside this directory.
  185. #
  186. # Note that you must specify a directory here, not a file name.
  187. dir /home/liuzhen/data
  188.  
  189. ################################# REPLICATION #################################
  190.  
  191. # Master-Slave replication. Use slaveof to make a Redis instance a copy of
  192. # another Redis server. A few things to understand ASAP about Redis replication.
  193. #
  194. # 1) Redis replication is asynchronous, but you can configure a master to
  195. # stop accepting writes if it appears to be not connected with at least
  196. # a given number of slaves.
  197. # 2) Redis slaves are able to perform a partial resynchronization with the
  198. # master if the replication link is lost for a relatively small amount of
  199. # time. You may want to configure the replication backlog size (see the next
  200. # sections of this file) with a sensible value depending on your needs.
  201. # 3) Replication is automatic and does not need user intervention. After a
  202. # network partition slaves automatically try to reconnect to masters
  203. # and resynchronize with them.
  204. #
  205. # slaveof <masterip> <masterport>
  206.  
  207. # If the master is password protected (using the "requirepass" configuration
  208. # directive below) it is possible to tell the slave to authenticate before
  209. # starting the replication synchronization process, otherwise the master will
  210. # refuse the slave request.
  211. #
  212. # masterauth <master-password>
  213.  
  214. # When a slave loses its connection with the master, or when the replication
  215. # is still in progress, the slave can act in two different ways:
  216. #
  217. # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
  218. # still reply to client requests, possibly with out of date data, or the
  219. # data set may just be empty if this is the first synchronization.
  220. #
  221. # 2) if slave-serve-stale-data is set to 'no' the slave will reply with
  222. # an error "SYNC with master in progress" to all the kind of commands
  223. # but to INFO and SLAVEOF.
  224. #
  225. slave-serve-stale-data yes
  226.  
  227. # You can configure a slave instance to accept writes or not. Writing against
  228. # a slave instance may be useful to store some ephemeral data (because data
  229. # written on a slave will be easily deleted after resync with the master) but
  230. # may also cause problems if clients are writing to it because of a
  231. # misconfiguration.
  232. #
  233. # Since Redis 2.6 by default slaves are read-only.
  234. #
  235. # Note: read only slaves are not designed to be exposed to untrusted clients
  236. # on the internet. It's just a protection layer against misuse of the instance.
  237. # Still a read only slave exports by default all the administrative commands
  238. # such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
  239. # security of read only slaves using 'rename-command' to shadow all the
  240. # administrative / dangerous commands.
  241. slave-read-only yes
  242.  
  243. # Slaves send PINGs to server in a predefined interval. It's possible to change
  244. # this interval with the repl_ping_slave_period option. The default value is 10
  245. # seconds.
  246. #
  247. # repl-ping-slave-period 10
  248.  
  249. # The following option sets the replication timeout for:
  250. #
  251. # 1) Bulk transfer I/O during SYNC, from the point of view of slave.
  252. # 2) Master timeout from the point of view of slaves (data, pings).
  253. # 3) Slave timeout from the point of view of masters (REPLCONF ACK pings).
  254. #
  255. # It is important to make sure that this value is greater than the value
  256. # specified for repl-ping-slave-period otherwise a timeout will be detected
  257. # every time there is low traffic between the master and the slave.
  258. #
  259. # repl-timeout 60
  260.  
  261. # Disable TCP_NODELAY on the slave socket after SYNC?
  262. #
  263. # If you select "yes" Redis will use a smaller number of TCP packets and
  264. # less bandwidth to send data to slaves. But this can add a delay for
  265. # the data to appear on the slave side, up to 40 milliseconds with
  266. # Linux kernels using a default configuration.
  267. #
  268. # If you select "no" the delay for data to appear on the slave side will
  269. # be reduced but more bandwidth will be used for replication.
  270. #
  271. # By default we optimize for low latency, but in very high traffic conditions
  272. # or when the master and slaves are many hops away, turning this to "yes" may
  273. # be a good idea.
  274. repl-disable-tcp-nodelay no
  275.  
  276. # Set the replication backlog size. The backlog is a buffer that accumulates
  277. # slave data when slaves are disconnected for some time, so that when a slave
  278. # wants to reconnect again, often a full resync is not needed, but a partial
  279. # resync is enough, just passing the portion of data the slave missed while
  280. # disconnected.
  281. #
  282. # The biggest the replication backlog, the longer the time the slave can be
  283. # disconnected and later be able to perform a partial resynchronization.
  284. #
  285. # The backlog is only allocated once there is at least a slave connected.
  286. #
  287. # repl-backlog-size 1mb
  288.  
  289. # After a master has no longer connected slaves for some time, the backlog
  290. # will be freed. The following option configures the amount of seconds that
  291. # need to elapse, starting from the time the last slave disconnected, for
  292. # the backlog buffer to be freed.
  293. #
  294. # A value of 0 means to never release the backlog.
  295. #
  296. # repl-backlog-ttl 3600
  297.  
  298. # The slave priority is an integer number published by Redis in the INFO output.
  299. # It is used by Redis Sentinel in order to select a slave to promote into a
  300. # master if the master is no longer working correctly.
  301. #
  302. # A slave with a low priority number is considered better for promotion, so
  303. # for instance if there are three slaves with priority 10, 100, 25 Sentinel will
  304. # pick the one with priority 10, that is the lowest.
  305. #
  306. # However a special priority of 0 marks the slave as not able to perform the
  307. # role of master, so a slave with priority of 0 will never be selected by
  308. # Redis Sentinel for promotion.
  309. #
  310. # By default the priority is 100.
  311. slave-priority 100
  312.  
  313. # It is possible for a master to stop accepting writes if there are less than
  314. # N slaves connected, having a lag less or equal than M seconds.
  315. #
  316. # The N slaves need to be in "online" state.
  317. #
  318. # The lag in seconds, that must be <= the specified value, is calculated from
  319. # the last ping received from the slave, that is usually sent every second.
  320. #
  321. # This option does not GUARANTEES that N replicas will accept the write, but
  322. # will limit the window of exposure for lost writes in case not enough slaves
  323. # are available, to the specified number of seconds.
  324. #
  325. # For example to require at least 3 slaves with a lag <= 10 seconds use:
  326. #
  327. # min-slaves-to-write 3
  328. # min-slaves-max-lag 10
  329. #
  330. # Setting one or the other to 0 disables the feature.
  331. #
  332. # By default min-slaves-to-write is set to 0 (feature disabled) and
  333. # min-slaves-max-lag is set to 10.
  334.  
  335. ################################## SECURITY ###################################
  336.  
  337. # Require clients to issue AUTH <PASSWORD> before processing any other
  338. # commands. This might be useful in environments in which you do not trust
  339. # others with access to the host running redis-server.
  340. #
  341. # This should stay commented out for backward compatibility and because most
  342. # people do not need auth (e.g. they run their own servers).
  343. #
  344. # Warning: since Redis is pretty fast an outside user can try up to
  345. # 150k passwords per second against a good box. This means that you should
  346. # use a very strong password otherwise it will be very easy to break.
  347. #
  348. # requirepass foobared
  349.  
  350. # Command renaming.
  351. #
  352. # It is possible to change the name of dangerous commands in a shared
  353. # environment. For instance the CONFIG command may be renamed into something
  354. # hard to guess so that it will still be available for internal-use tools
  355. # but not available for general clients.
  356. #
  357. # Example:
  358. #
  359. # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
  360. #
  361. # It is also possible to completely kill a command by renaming it into
  362. # an empty string:
  363. #
  364. # rename-command CONFIG ""
  365. #
  366. # Please note that changing the name of commands that are logged into the
  367. # AOF file or transmitted to slaves may cause problems.
  368.  
  369. ################################### LIMITS ####################################
  370.  
  371. # Set the max number of connected clients at the same time. By default
  372. # this limit is set to 10000 clients, however if the Redis server is not
  373. # able to configure the process file limit to allow for the specified limit
  374. # the max number of allowed clients is set to the current file limit
  375. # minus 32 (as Redis reserves a few file descriptors for internal uses).
  376. #
  377. # Once the limit is reached Redis will close all the new connections sending
  378. # an error 'max number of clients reached'.
  379. #
  380. # maxclients 10000
  381.  
  382. # Don't use more memory than the specified amount of bytes.
  383. # When the memory limit is reached Redis will try to remove keys
  384. # according to the eviction policy selected (see maxmemory-policy).
  385. #
  386. # If Redis can't remove keys according to the policy, or if the policy is
  387. # set to 'noeviction', Redis will start to reply with errors to commands
  388. # that would use more memory, like SET, LPUSH, and so on, and will continue
  389. # to reply to read-only commands like GET.
  390. #
  391. # This option is usually useful when using Redis as an LRU cache, or to set
  392. # a hard memory limit for an instance (using the 'noeviction' policy).
  393. #
  394. # WARNING: If you have slaves attached to an instance with maxmemory on,
  395. # the size of the output buffers needed to feed the slaves are subtracted
  396. # from the used memory count, so that network problems / resyncs will
  397. # not trigger a loop where keys are evicted, and in turn the output
  398. # buffer of slaves is full with DELs of keys evicted triggering the deletion
  399. # of more keys, and so forth until the database is completely emptied.
  400. #
  401. # In short... if you have slaves attached it is suggested that you set a lower
  402. # limit for maxmemory so that there is some free RAM on the system for slave
  403. # output buffers (but this is not needed if the policy is 'noeviction').
  404. #
  405. # maxmemory <bytes>
  406.  
  407. # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
  408. # is reached. You can select among five behaviors:
  409. #
  410. # volatile-lru -> remove the key with an expire set using an LRU algorithm
  411. # allkeys-lru -> remove any key accordingly to the LRU algorithm
  412. # volatile-random -> remove a random key with an expire set
  413. # allkeys-random -> remove a random key, any key
  414. # volatile-ttl -> remove the key with the nearest expire time (minor TTL)
  415. # noeviction -> don't expire at all, just return an error on write operations
  416. #
  417. # Note: with any of the above policies, Redis will return an error on write
  418. # operations, when there are not suitable keys for eviction.
  419. #
  420. # At the date of writing this commands are: set setnx setex append
  421. # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
  422. # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
  423. # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
  424. # getset mset msetnx exec sort
  425. #
  426. # The default is:
  427. #
  428. # maxmemory-policy volatile-lru
  429.  
  430. # LRU and minimal TTL algorithms are not precise algorithms but approximated
  431. # algorithms (in order to save memory), so you can select as well the sample
  432. # size to check. For instance for default Redis will check three keys and
  433. # pick the one that was used less recently, you can change the sample size
  434. # using the following configuration directive.
  435. #
  436. # maxmemory-samples 3
  437.  
  438. ############################## APPEND ONLY MODE ###############################
  439.  
  440. # By default Redis asynchronously dumps the dataset on disk. This mode is
  441. # good enough in many applications, but an issue with the Redis process or
  442. # a power outage may result into a few minutes of writes lost (depending on
  443. # the configured save points).
  444. #
  445. # The Append Only File is an alternative persistence mode that provides
  446. # much better durability. For instance using the default data fsync policy
  447. # (see later in the config file) Redis can lose just one second of writes in a
  448. # dramatic event like a server power outage, or a single write if something
  449. # wrong with the Redis process itself happens, but the operating system is
  450. # still running correctly.
  451. #
  452. # AOF and RDB persistence can be enabled at the same time without problems.
  453. # If the AOF is enabled on startup Redis will load the AOF, that is the file
  454. # with the better durability guarantees.
  455. #
  456. # Please check http://redis.io/topics/persistence for more information.
  457.  
  458. appendonly yes
  459.  
  460. # The name of the append only file (default: "appendonly.aof")
  461.  
  462. appendfilename "appendonly_6391.aof"
  463.  
  464. # The fsync() call tells the Operating System to actually write data on disk
  465. # instead to wait for more data in the output buffer. Some OS will really flush
  466. # data on disk, some other OS will just try to do it ASAP.
  467. #
  468. # Redis supports three different modes:
  469. #
  470. # no: don't fsync, just let the OS flush the data when it wants. Faster.
  471. # always: fsync after every write to the append only log . Slow, Safest.
  472. # everysec: fsync only one time every second. Compromise.
  473. #
  474. # The default is "everysec", as that's usually the right compromise between
  475. # speed and data safety. It's up to you to understand if you can relax this to
  476. # "no" that will let the operating system flush the output buffer when
  477. # it wants, for better performances (but if you can live with the idea of
  478. # some data loss consider the default persistence mode that's snapshotting),
  479. # or on the contrary, use "always" that's very slow but a bit safer than
  480. # everysec.
  481. #
  482. # More details please check the following article:
  483. # http://antirez.com/post/redis-persistence-demystified.html
  484. #
  485. # If unsure, use "everysec".
  486.  
  487. # appendfsync always
  488. appendfsync everysec
  489. # appendfsync no
  490.  
  491. # When the AOF fsync policy is set to always or everysec, and a background
  492. # saving process (a background save or AOF log background rewriting) is
  493. # performing a lot of I/O against the disk, in some Linux configurations
  494. # Redis may block too long on the fsync() call. Note that there is no fix for
  495. # this currently, as even performing fsync in a different thread will block
  496. # our synchronous write(2) call.
  497. #
  498. # In order to mitigate this problem it's possible to use the following option
  499. # that will prevent fsync() from being called in the main process while a
  500. # BGSAVE or BGREWRITEAOF is in progress.
  501. #
  502. # This means that while another child is saving, the durability of Redis is
  503. # the same as "appendfsync none". In practical terms, this means that it is
  504. # possible to lose up to 30 seconds of log in the worst scenario (with the
  505. # default Linux settings).
  506. #
  507. # If you have latency problems turn this to "yes". Otherwise leave it as
  508. # "no" that is the safest pick from the point of view of durability.
  509.  
  510. no-appendfsync-on-rewrite no
  511.  
  512. # Automatic rewrite of the append only file.
  513. # Redis is able to automatically rewrite the log file implicitly calling
  514. # BGREWRITEAOF when the AOF log size grows by the specified percentage.
  515. #
  516. # This is how it works: Redis remembers the size of the AOF file after the
  517. # latest rewrite (if no rewrite has happened since the restart, the size of
  518. # the AOF at startup is used).
  519. #
  520. # This base size is compared to the current size. If the current size is
  521. # bigger than the specified percentage, the rewrite is triggered. Also
  522. # you need to specify a minimal size for the AOF file to be rewritten, this
  523. # is useful to avoid rewriting the AOF file even if the percentage increase
  524. # is reached but it is still pretty small.
  525. #
  526. # Specify a percentage of zero in order to disable the automatic AOF
  527. # rewrite feature.
  528.  
  529. auto-aof-rewrite-percentage 100
  530. auto-aof-rewrite-min-size 64mb
  531.  
  532. # An AOF file may be found to be truncated at the end during the Redis
  533. # startup process, when the AOF data gets loaded back into memory.
  534. # This may happen when the system where Redis is running
  535. # crashes, especially when an ext4 filesystem is mounted without the
  536. # data=ordered option (however this can't happen when Redis itself
  537. # crashes or aborts but the operating system still works correctly).
  538. #
  539. # Redis can either exit with an error when this happens, or load as much
  540. # data as possible (the default now) and start if the AOF file is found
  541. # to be truncated at the end. The following option controls this behavior.
  542. #
  543. # If aof-load-truncated is set to yes, a truncated AOF file is loaded and
  544. # the Redis server starts emitting a log to inform the user of the event.
  545. # Otherwise if the option is set to no, the server aborts with an error
  546. # and refuses to start. When the option is set to no, the user requires
  547. # to fix the AOF file using the "redis-check-aof" utility before to restart
  548. # the server.
  549. #
  550. # Note that if the AOF file will be found to be corrupted in the middle
  551. # the server will still exit with an error. This option only applies when
  552. # Redis will try to read more data from the AOF file but not enough bytes
  553. # will be found.
  554. aof-load-truncated yes
  555.  
  556. ################################ LUA SCRIPTING ###############################
  557.  
  558. # Max execution time of a Lua script in milliseconds.
  559. #
  560. # If the maximum execution time is reached Redis will log that a script is
  561. # still in execution after the maximum allowed time and will start to
  562. # reply to queries with an error.
  563. #
  564. # When a long running script exceed the maximum execution time only the
  565. # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
  566. # used to stop a script that did not yet called write commands. The second
  567. # is the only way to shut down the server in the case a write commands was
  568. # already issue by the script but the user don't want to wait for the natural
  569. # termination of the script.
  570. #
  571. # Set it to 0 or a negative value for unlimited execution without warnings.
  572. lua-time-limit 5000
  573.  
  574. ################################## SLOW LOG ###################################
  575.  
  576. # The Redis Slow Log is a system to log queries that exceeded a specified
  577. # execution time. The execution time does not include the I/O operations
  578. # like talking with the client, sending the reply and so forth,
  579. # but just the time needed to actually execute the command (this is the only
  580. # stage of command execution where the thread is blocked and can not serve
  581. # other requests in the meantime).
  582. #
  583. # You can configure the slow log with two parameters: one tells Redis
  584. # what is the execution time, in microseconds, to exceed in order for the
  585. # command to get logged, and the other parameter is the length of the
  586. # slow log. When a new command is logged the oldest one is removed from the
  587. # queue of logged commands.
  588.  
  589. # The following time is expressed in microseconds, so 1000000 is equivalent
  590. # to one second. Note that a negative number disables the slow log, while
  591. # a value of zero forces the logging of every command.
  592. slowlog-log-slower-than 10000
  593.  
  594. # There is no limit to this length. Just be aware that it will consume memory.
  595. # You can reclaim memory used by the slow log with SLOWLOG RESET.
  596. slowlog-max-len 128
  597.  
  598. ################################ LATENCY MONITOR ##############################
  599.  
  600. # The Redis latency monitoring subsystem samples different operations
  601. # at runtime in order to collect data related to possible sources of
  602. # latency of a Redis instance.
  603. #
  604. # Via the LATENCY command this information is available to the user that can
  605. # print graphs and obtain reports.
  606. #
  607. # The system only logs operations that were performed in a time equal or
  608. # greater than the amount of milliseconds specified via the
  609. # latency-monitor-threshold configuration directive. When its value is set
  610. # to zero, the latency monitor is turned off.
  611. #
  612. # By default latency monitoring is disabled since it is mostly not needed
  613. # if you don't have latency issues, and collecting data has a performance
  614. # impact, that while very small, can be measured under big load. Latency
  615. # monitoring can easily be enalbed at runtime using the command
  616. # "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
  617. latency-monitor-threshold 0
  618.  
  619. ############################# Event notification ##############################
  620.  
  621. # Redis can notify Pub/Sub clients about events happening in the key space.
  622. # This feature is documented at http://redis.io/topics/notifications
  623. #
  624. # For instance if keyspace events notification is enabled, and a client
  625. # performs a DEL operation on key "foo" stored in the Database 0, two
  626. # messages will be published via Pub/Sub:
  627. #
  628. # PUBLISH __keyspace@0__:foo del
  629. # PUBLISH __keyevent@0__:del foo
  630. #
  631. # It is possible to select the events that Redis will notify among a set
  632. # of classes. Every class is identified by a single character:
  633. #
  634. # K Keyspace events, published with __keyspace@<db>__ prefix.
  635. # E Keyevent events, published with __keyevent@<db>__ prefix.
  636. # g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
  637. # $ String commands
  638. # l List commands
  639. # s Set commands
  640. # h Hash commands
  641. # z Sorted set commands
  642. # x Expired events (events generated every time a key expires)
  643. # e Evicted events (events generated when a key is evicted for maxmemory)
  644. # A Alias for g$lshzxe, so that the "AKE" string means all the events.
  645. #
  646. # The "notify-keyspace-events" takes as argument a string that is composed
  647. # by zero or multiple characters. The empty string means that notifications
  648. # are disabled at all.
  649. #
  650. # Example: to enable list and generic events, from the point of view of the
  651. # event name, use:
  652. #
  653. # notify-keyspace-events Elg
  654. #
  655. # Example 2: to get the stream of the expired keys subscribing to channel
  656. # name __keyevent@0__:expired use:
  657. #
  658. # notify-keyspace-events Ex
  659. #
  660. # By default all notifications are disabled because most users don't need
  661. # this feature and the feature has some overhead. Note that if you don't
  662. # specify at least one of K or E, no events will be delivered.
  663. notify-keyspace-events ""
  664.  
  665. ############################### ADVANCED CONFIG ###############################
  666.  
  667. # Hashes are encoded using a memory efficient data structure when they have a
  668. # small number of entries, and the biggest entry does not exceed a given
  669. # threshold. These thresholds can be configured using the following directives.
  670. hash-max-ziplist-entries 512
  671. hash-max-ziplist-value 64
  672.  
  673. # Similarly to hashes, small lists are also encoded in a special way in order
  674. # to save a lot of space. The special representation is only used when
  675. # you are under the following limits:
  676. list-max-ziplist-entries 512
  677. list-max-ziplist-value 64
  678.  
  679. # Sets have a special encoding in just one case: when a set is composed
  680. # of just strings that happens to be integers in radix 10 in the range
  681. # of 64 bit signed integers.
  682. # The following configuration setting sets the limit in the size of the
  683. # set in order to use this special memory saving encoding.
  684. set-max-intset-entries 512
  685.  
  686. # Similarly to hashes and lists, sorted sets are also specially encoded in
  687. # order to save a lot of space. This encoding is only used when the length and
  688. # elements of a sorted set are below the following limits:
  689. zset-max-ziplist-entries 128
  690. zset-max-ziplist-value 64
  691.  
  692. # HyperLogLog sparse representation bytes limit. The limit includes the
  693. # 16 bytes header. When an HyperLogLog using the sparse representation crosses
  694. # this limit, it is converted into the dense representation.
  695. #
  696. # A value greater than 16000 is totally useless, since at that point the
  697. # dense representation is more memory efficient.
  698. #
  699. # The suggested value is ~ 3000 in order to have the benefits of
  700. # the space efficient encoding without slowing down too much PFADD,
  701. # which is O(N) with the sparse encoding. The value can be raised to
  702. # ~ 10000 when CPU is not a concern, but space is, and the data set is
  703. # composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
  704. hll-sparse-max-bytes 3000
  705.  
  706. # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
  707. # order to help rehashing the main Redis hash table (the one mapping top-level
  708. # keys to values). The hash table implementation Redis uses (see dict.c)
  709. # performs a lazy rehashing: the more operation you run into a hash table
  710. # that is rehashing, the more rehashing "steps" are performed, so if the
  711. # server is idle the rehashing is never complete and some more memory is used
  712. # by the hash table.
  713. #
  714. # The default is to use this millisecond 10 times every second in order to
  715. # active rehashing the main dictionaries, freeing memory when possible.
  716. #
  717. # If unsure:
  718. # use "activerehashing no" if you have hard latency requirements and it is
  719. # not a good thing in your environment that Redis can reply form time to time
  720. # to queries with 2 milliseconds delay.
  721. #
  722. # use "activerehashing yes" if you don't have such hard requirements but
  723. # want to free memory asap when possible.
  724. activerehashing yes
  725.  
  726. # The client output buffer limits can be used to force disconnection of clients
  727. # that are not reading data from the server fast enough for some reason (a
  728. # common reason is that a Pub/Sub client can't consume messages as fast as the
  729. # publisher can produce them).
  730. #
  731. # The limit can be set differently for the three different classes of clients:
  732. #
  733. # normal -> normal clients including MONITOR clients
  734. # slave -> slave clients
  735. # pubsub -> clients subscribed to at least one pubsub channel or pattern
  736. #
  737. # The syntax of every client-output-buffer-limit directive is the following:
  738. #
  739. # client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
  740. #
  741. # A client is immediately disconnected once the hard limit is reached, or if
  742. # the soft limit is reached and remains reached for the specified number of
  743. # seconds (continuously).
  744. # So for instance if the hard limit is 32 megabytes and the soft limit is
  745. # 16 megabytes / 10 seconds, the client will get disconnected immediately
  746. # if the size of the output buffers reach 32 megabytes, but will also get
  747. # disconnected if the client reaches 16 megabytes and continuously overcomes
  748. # the limit for 10 seconds.
  749. #
  750. # By default normal clients are not limited because they don't receive data
  751. # without asking (in a push way), but just after a request, so only
  752. # asynchronous clients may create a scenario where data is requested faster
  753. # than it can read.
  754. #
  755. # Instead there is a default limit for pubsub and slave clients, since
  756. # subscribers and slaves receive data in a push fashion.
  757. #
  758. # Both the hard or the soft limit can be disabled by setting them to zero.
  759. client-output-buffer-limit normal 0 0 0
  760. client-output-buffer-limit slave 256mb 64mb 60
  761. client-output-buffer-limit pubsub 32mb 8mb 60
  762.  
  763. # Redis calls an internal function to perform many background tasks, like
  764. # closing connections of clients in timeout, purging expired keys that are
  765. # never requested, and so forth.
  766. #
  767. # Not all tasks are performed with the same frequency, but Redis checks for
  768. # tasks to perform accordingly to the specified "hz" value.
  769. #
  770. # By default "hz" is set to 10. Raising the value will use more CPU when
  771. # Redis is idle, but at the same time will make Redis more responsive when
  772. # there are many keys expiring at the same time, and timeouts may be
  773. # handled with more precision.
  774. #
  775. # The range is between 1 and 500, however a value over 100 is usually not
  776. # a good idea. Most users should use the default of 10 and raise this up to
  777. # 100 only in environments where very low latency is required.
  778. hz 10
  779.  
  780. # When a child rewrites the AOF file, if the following option is enabled
  781. # the file will be fsync-ed every 32 MB of data generated. This is useful
  782. # in order to commit the file to the disk more incrementally and avoid
  783. # big latency spikes.
  784. aof-rewrite-incremental-fsync yes

redis_6391.conf源码

(7) 重启指定端口的服务,例如此处在Redis按照src目录下,运行./redis-server redis_6391.conf即可启动服务,待服务完成启动成功后,即可把指定的AOF文件数据加载进去(PS:此步骤需要先确认指定目录下的AOF文件已被替换成目标AOF文件,期间可以多次重启实现具体AOF文件加载)

以下给出我本机使用Redis加载启动大小为1.7G的aof文件,由于文件比较大,所以加载的时间有点长,此处是加载了60秒。

  1. liuzhen@liuzhen-ubuntu:~/redis-2.8.17/src$ ./redis-server redis_6391.conf
  2.  
  3. [68180] 19 Jul 15:02:07.997 * Increased maximum number of open files to 10032 (it was originally set to 1024).
  4.  
  5. _._
  6.  
  7. _.-``__ ''-._
  8.  
  9. _.-`` `. `_. ''-._ Redis 2.8.17 (00000000/0) 64 bit
  10.  
  11. .-`` .-```. ```\/ _.,_ ''-._
  12.  
  13. ( ' , .-` | `, ) Running in stand alone mode
  14.  
  15. |`-._`-...-` __...-.``-._|'` _.-'| Port: 6391
  16.  
  17. | `-._ `._ / _.-' | PID: 68180
  18.  
  19. `-._ `-._ `-./ _.-' _.-'
  20.  
  21. |`-._`-._ `-.__.-' _.-'_.-'|
  22.  
  23. | `-._`-._ _.-'_.-' | http://redis.io
  24.  
  25. `-._ `-._`-.__.-'_.-' _.-'
  26.  
  27. |`-._`-._ `-.__.-' _.-'_.-'|
  28.  
  29. | `-._`-._ _.-'_.-' |
  30.  
  31. `-._ `-._`-.__.-'_.-' _.-'
  32.  
  33. `-._ `-.__.-' _.-'
  34.  
  35. `-._ _.-'
  36.  
  37. `-.__.-'
  38.  
  39. [68180] 19 Jul 15:02:08.011 # Server started, Redis version 2.8.17
  40.  
  41. [68180] 19 Jul 15:05:12.843 * DB loaded from append only file: 184.831 seconds
  42.  
  43. [68180] 19 Jul 15:05:12.843 * The server is now ready to accept connections on port 6391
  44.  
  45. [68180] 19 Jul 15:05:13.008 * 10000 changes in 60 seconds. Saving...
  46.  
  47. [68180] 19 Jul 15:05:13.084 * Background saving started by pid 68228
  48.  
  49. [68228] 19 Jul 15:05:47.548 * DB saved on disk
  50.  
  51. [68228] 19 Jul 15:05:47.613 * RDB: 23 MB of memory used by copy-on-write
  52.  
  53. [68180] 19 Jul 15:05:47.717 * Background saving terminated with success
  54.  
  55. [68180] 19 Jul 15:07:54.064 * DB saved on disk
  56.  
  57. [68180] 19 Jul 15:08:58.096 * Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.
  58.  
  59. [68180] 19 Jul 16:49:14.515 * Background saving started by pid 90980
  60.  
  61. [90980] 19 Jul 16:56:56.883 * DB saved on disk
  62.  
  63. [90980] 19 Jul 16:56:56.966 * RDB: 4 MB of memory used by copy-on-write
  64.  
  65. [68180] 19 Jul 16:56:57.418 * Background saving terminated with success

(8)打开Redis客户端,运行./redis-cli -p 6391,客户端启动成功后,运行命令save,等待命令运行成功后,即可得到本步骤最终目标的RDB持久化文件(PS:此处如果是在线上环境尝试,建议采用bgsave命令)

此处给出,使用AOF文件还原数据后,查看具体数据信息的结果:

  1. liuzhen@liuzhen-ubuntu:~/redis-2.8.17/src$ ./redis-cli -p 6391
  2.  
  3. 127.0.0.1:6391> info
  4.  
  5. # Server
  6.  
  7. redis_version:2.8.17
  8.  
  9. redis_git_sha1:00000000
  10.  
  11. redis_git_dirty:0
  12.  
  13. redis_build_id:4ba260b6ab802599
  14.  
  15. redis_mode:standalone
  16.  
  17. os:Linux 4.13.0-39-generic x86_64
  18.  
  19. arch_bits:64
  20.  
  21. multiplexing_api:epoll
  22.  
  23. gcc_version:5.4.0
  24.  
  25. process_id:68180
  26.  
  27. run_id:97cddc494e3924885bacb03776dfe09e8fa055f9
  28.  
  29. tcp_port:6391
  30.  
  31. uptime_in_seconds:9400
  32.  
  33. uptime_in_days:0
  34.  
  35. hz:10
  36.  
  37. lru_clock:5266472
  38.  
  39. config_file:/home/liuzhen/redis-2.8.17/src/redis_6391.conf
  40.  
  41. # Clients
  42.  
  43. connected_clients:1
  44.  
  45. client_longest_output_list:0
  46.  
  47. client_biggest_input_buf:0
  48.  
  49. blocked_clients:0
  50.  
  51. # Memory
  52.  
  53. used_memory:2239514040
  54.  
  55. used_memory_human:2.09G
  56.  
  57. used_memory_rss:330895360
  58.  
  59. used_memory_peak:2272377648
  60.  
  61. used_memory_peak_human:2.12G
  62.  
  63. used_memory_lua:38912
  64.  
  65. mem_fragmentation_ratio:0.15
  66.  
  67. mem_allocator:jemalloc-3.6.0
  68.  
  69. # Persistence
  70.  
  71. loading:0
  72.  
  73. rdb_changes_since_last_save:0
  74.  
  75. rdb_bgsave_in_progress:0
  76.  
  77. rdb_last_save_time:1531990617
  78.  
  79. rdb_last_bgsave_status:ok
  80.  
  81. rdb_last_bgsave_time_sec:463
  82.  
  83. rdb_current_bgsave_time_sec:-1
  84.  
  85. aof_enabled:1
  86.  
  87. aof_rewrite_in_progress:0
  88.  
  89. aof_rewrite_scheduled:0
  90.  
  91. aof_last_rewrite_time_sec:-1
  92.  
  93. aof_current_rewrite_time_sec:-1
  94.  
  95. aof_last_bgrewrite_status:ok
  96.  
  97. aof_last_write_status:ok
  98.  
  99. aof_current_size:1700508277
  100.  
  101. aof_base_size:1699947297
  102.  
  103. aof_pending_rewrite:0
  104.  
  105. aof_buffer_length:0
  106.  
  107. aof_rewrite_buffer_length:0
  108.  
  109. aof_pending_bio_fsync:0
  110.  
  111. aof_delayed_fsync:1
  112.  
  113. # Stats
  114.  
  115. total_connections_received:2
  116.  
  117. total_commands_processed:281
  118.  
  119. instantaneous_ops_per_sec:0
  120.  
  121. rejected_connections:0
  122.  
  123. sync_full:0
  124.  
  125. sync_partial_ok:0
  126.  
  127. sync_partial_err:0
  128.  
  129. expired_keys:9290
  130.  
  131. evicted_keys:0
  132.  
  133. keyspace_hits:1065050
  134.  
  135. keyspace_misses:0
  136.  
  137. pubsub_channels:0
  138.  
  139. pubsub_patterns:0
  140.  
  141. latest_fork_usec:101807
  142.  
  143. # Replication
  144.  
  145. role:master
  146.  
  147. connected_slaves:0
  148.  
  149. master_repl_offset:0
  150.  
  151. repl_backlog_active:0
  152.  
  153. repl_backlog_size:1048576
  154.  
  155. repl_backlog_first_byte_offset:0
  156.  
  157. repl_backlog_histlen:0
  158.  
  159. # CPU
  160.  
  161. used_cpu_sys:46.01
  162.  
  163. used_cpu_user:189.71
  164.  
  165. used_cpu_sys_children:134.11
  166.  
  167. used_cpu_user_children:79.12
  168.  
  169. # Keyspace
  170.  
  171. db1:keys=1146336,expires=51965,avg_ttl=276142509
  172.  
  173. 127.0.0.1:6391>

备注:在Redis指定端口服务加载给定的AOF文件时,如果AOF文件过大,系统可能会报如下错误:

Can't save in background: fork: Cannot allocate memory

解决办法:

修改系统/etc/sysctl.conf文件,并添加以下内容:

  1. vm.overcommit_memory=1

在 FreeBSD上:

  1. sudo /etc/rc.d/sysctl reload

在 Linux上:

  1. sudo sysctl -p /etc/sysctl.conf

参考资料:

使用AOF持久化文件实现还原Redis数据库并得到RDB持久化文件的更多相关文章

  1. redis数据库通过dump.rdb文件恢复数据库或者数据库迁移

    环境:centos7.2软件:redis-3.2.10(yum安装) 情景一:公司之前的redis没有开启aof模式,一直是rdb模式,但是数据又非常重要,数据一点也不能丢失,所以需要开启aof,但是 ...

  2. Redis 详解 (六) RDB 持久化

    目录 1.RDB 简介 2.触发方式 ①.自动触发 ②.手动触发 3.恢复数据 4.停止 RDB 持久化 5.RDB 的优势和劣势 6.RDB 自动保存的原理  前面我们说过,Redis 相对于 Me ...

  3. redis系列:RDB持久化与AOF持久化

    前言 什么是持久化? 持久化(Persistence),即把数据(如内存中的对象)保存到可永久保存的存储设备中(如磁盘).持久化的主要应用是将内存中的对象存储在数据库中,或者存储在磁盘文件中.XML数 ...

  4. 学会这15点,让你分分钟拿下Redis数据库

    1.Redis简介 REmote DIctionary Server(Redis) 是一个由Salvatore Sanfilippo写的key-value存储系统.Redis是一个开源的使用ANSI ...

  5. 深入学习Redis(2):持久化

    前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化.复制(及读写分离).哨兵.以及集群. 本文将先说明上述几种技术分别解决了Redis高可 ...

  6. redis系列--redis4.0深入持久化

    前言 在之前的博文中已经详细的介绍了redis4.0基础部分,并且在memcache和redis对比中提及redis提供可靠的数据持久化方案,而memcache没有数据持久化方案,本篇博文将详细介绍r ...

  7. 一篇文章了解Redis数据库

    文章原创于公众号:程序猿周先森.本平台不定时更新,喜欢我的文章,欢迎关注我的微信公众号. redis是一个key-value存储系统.它支持存储的value类型相对更多,包括string(字符串).l ...

  8. 数据库与缓存:2.Redis数据库的基本知识

    1.属于什么类型的数据库 not only sql  非关系型数据库,与传统的关系型数据库不同,存储形式都是kv形式. 2.特点 几乎不支持事务,key-value形式存储,支持队列和缓存(可以设置数 ...

  9. Redis数据库总结

    1.Redis简介 REmote DIctionary Server(Redis) 是一个由Salvatore Sanfilippo写的key-value存储系统.Redis是一个开源的使用ANSI ...

随机推荐

  1. 《转》MySQL 5.7版本新特性连载

    MySQL 5.7版本新特性连载(一) 本文将和大家一起分享下5.7的新特性,不过我们要先从即将被删除的特性以及建议不再使用的特性说起.根据这些情况,我们在新版本及以后的版本中,应该不再使用,避免未来 ...

  2. MVC开发中的常见错误-03-System.Data.Entity.Validation.DbEntityValidationException: 对一个或多个实体的验证失败。有关详细信息,请参见“EntityValidationErrors”属性。

    return Db.SaveChanges()>0; return CurrentDBSession.SaveChanges(); RoleInfoService.EditEntity(role ...

  3. Windows系统下oracle数据库每天定时备份

    第一步:建立备份脚本oraclebackup.bat 首先建立一个备份bat文件,在D盘下新建备份目录oraclebackup,将oracle安装目录下的EXP.EXE复制到此目录下,再新建一个文本文 ...

  4. Collections.sort 给集合排序

    List<MenuVo> child_menus = new ArrayList<MenuVo>(); for (MenuVo menuVo : child_menus) { ...

  5. Spring之hello world(Spring入门)

    spring各个版本中: 在3.0以下的版本,源码有spring中相关的所有包[spring功能 + 依赖包] 如2.5版本: 在3.0以上的版本,源码中只有spring的核心功能包[没有依赖包] ( ...

  6. nodejs模块——网络编程模块

    net模块提供了一个异步网络包装器,用于TCP网络编程,它包含了创建服务器和客户端的方法.dgram模块用于UDP网络编程. 参考链接:https://nodejs.org/api/net.html, ...

  7. MQ确认机制之事务机制------tx

    一:介绍 1.介绍 在前面的说的模式中会出现一个问题. 就是生产者将消息发送出去到底有没有到达rabbitMq,默认情况下是不知道. 有两种解决方式. AMQP实现事务机制 Confirm机制. 这里 ...

  8. Python - 经典程序示例

    列表排序 def que6(): # 6.输入三个整数x, y, z,形成一个列表,请把这n个数由小到大输出. # 程序分析:列表有sort方法,所以把他们组成列表即可. li = np.random ...

  9. golang 反向代理

    服务器 package main import ( "bytes" "encoding/base64" "encoding/json" &q ...

  10. python-线程的暂停, 恢复, 退出

    我们都知道python中可以是threading模块实现多线程, 但是模块并没有提供暂停, 恢复和停止线程的方法, 一旦线程对象调用start方法后, 只能等到对应的方法函数运行完毕. 也就是说一旦s ...