<题目链接>

<转载于 >>> >

题目大意:
 给定一个M*N矩阵,有些是黑色(1表示)否则白色(0表示),每翻转一个(i,j),会使得它和它周围4个格变为另一个颜色,要求翻转最少的点,使得变为全白色的矩阵,输出这个标记了翻转点的矩阵,如果有多个最优解,输出字典序最小的那个矩阵,若没有解,输出IMPOSSIBLE。

解题分析:

由于一个点翻转两次则返回原来的状态,所以最优解每个点最多翻转一次,但是2^(M*N)过大,所以2^N枚举第一行的所有翻转方式(逆字典序枚举),确定一种方式之后第二行也就随之确定了,因为如果第一行处理后没有翻回白色的点:(i,j),必须在第二行(i+1,j)翻回,否则将无法返回。反之第二行其他的点都处理为不翻转,要不然上一行的点会翻回黑色而无法改变。第二行ok后同理解决第三行,以此类推。处理到最后一行如果不是全白就输出IMPOSSIBLE。否则更新结果。

即,用二进制枚举第一行的翻转情况,然后2~n-1行按照上一行的情况来翻转,最后再判断最后一行是否全部为0,如果为0,则记录下翻转次数,随时更新答案。

 
#include<cstdio>
#include<cstring>
int t[][], tem[][], m[][];
//这里用一个数组记录翻转次数,再配合原来的点数,就能判断反转后的点数,这里很巧妙
int M,N,dir[][] = { ,,,,,,-,,,- }; int get(int x, int y)//获得x,y点的颜色 //它本身的点数,再加上周围四个点反转的次数,就能得到它的真实点数
{
int c = t[x][y];
for (int i = ; i < ; i++)
{
int x1 = x + dir[i][], y1 = y + dir[i][];
c += tem[x1][y1];
}
return c % ;
} int cal() //计算2行及之后的,有解返回翻点数,无解返回-1
{
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
if (get(i - , j) == )
tem[i][j] = ;
//得到前n-1行的翻转次数 for (int i = ; i <= N; i++)
if (get(M, i))return -; //如果最后一行有一个点不为0,说明枚举的第一行不符合要求s
int res = ;
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
res += tem[i][j];
return res; //记录下需要翻转的总次数
} int main()
{
int min = -; //次数>0可以这样初始化
scanf("%d%d", &M, &N);
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
scanf("%d", &t[i][j]);
for (int i = ; i < ( << N); i++) //枚举第一行的所有情况
{
memset(tem, , sizeof(tem)); //初始化翻转数组
for (int j = ; j <= N; j++)
tem[][j] = (i >> (j - )) & ; //根据二进制得到第一行的翻转情况,这个技巧一定要掌握 int num = cal();
if (num >= && (min< || min>num)) //取情况成立并且总翻转次数最小的
{
min = num;
memcpy(m, tem, sizeof(tem)); //记录下最后的翻转矩阵
}
} if (min == -)printf("IMPOSSIBLE\n");
else
{
for (int i = ; i <= M; i++)
for (int j = ; j <= N; j++)
printf("%d%c", m[i][j], j == N ? '\n' : ' ');
}
return ;
}

2018-08-30

POJ 3279 Fliptile (二进制枚举)的更多相关文章

  1. poj 3279 Fliptile(二进制)

    http://poj.org/problem?id=3279 在n*N的矩阵上,0代表白色,1代表黑色,每次选取一个点可以其颜色换过来,即白色变成黑色,黑色变成白色,而且其上下左右的点颜色也要交换,求 ...

  2. poj 3279 Fliptile(二进制搜索)

    Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He ha ...

  3. POJ 3279 Fliptile[二进制状压DP]

    题目链接[http://poj.org/problem?id=3279] 题意:给出一个大小为M*N(1 ≤ M ≤ 15; 1 ≤ N ≤ 15) 的图,图中每个格子代表一个灯泡,mp[i][j] ...

  4. POJ - 3279 Fliptile (枚举)

    http://poj.org/problem?id=3279 题意 一个m*n的01矩阵,每次翻转(x,y),那么它上下左右以及本身就会0变1,1变0,问把矩阵变成全0的,最小需要点击多少步,并输出最 ...

  5. POJ 3279 Fliptile【枚举】

    题意: 又是农夫和牛的故事...有m*n个黑白块,黑块的背面是白块,白块背面是黑块,一头牛踩一块,则这个块的上下左右的方块都会转动,问至少踩多少块,才会使所有块都变成白色? 分析: 还是开关问题,同样 ...

  6. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  7. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  8. POJ 3279 Fliptile(翻格子)

    POJ 3279 Fliptile(翻格子) Time Limit: 2000MS    Memory Limit: 65536K Description - 题目描述 Farmer John kno ...

  9. POJ 3279 Fliptile(反转 +二进制枚举)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13631   Accepted: 5027 Descrip ...

随机推荐

  1. 【BUG】websphere找不到类或jar包冲突

    来自:http://liuwei1578.blog.163.com/blog/static/49580364200991572642653/ Jar包冲突问题是在大型Java软件开发中经常遇到的问题, ...

  2. Ajax跨域访问解决方案

    No 'Access-Control-Allow-Origin' header is present on the requested resource. 当使用ajax访问远程服务器时,请求失败,浏 ...

  3. AutoMapper中用户自定义转换

    Custom Type Converters Sometimes, you need to take complete control over the conversion of one type ...

  4. Linux Makefile 中的陷阱【转】

    转自:https://blog.csdn.net/QQ1452008/article/details/52247944 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog. ...

  5. 对WinMain程序入口函数返回值为msg.wParam的几点理解

    原文地址:http://blog.csdn.net/setflvet/article/details/6983224 1.在WinMain主函数中,最后的返回值是msg.wParam,这个参数是传递给 ...

  6. Python-HTML CSS题目

    一.简答1.手写html模板,并解释模板每个标签的作用 <!doctype html> 文件类型html <html>页面根 <head>后勤内容 <meta ...

  7. abstract class 和 interface 区别

    本文出自与:heipai:tsg666 含有 abstract 修饰符的 class 即为抽象类,abstract 类不能创建的实例对象.含有 abstract 方法的类必须定义为 abstract ...

  8. Laravel Cache 的缓存文件在到期后是否会自动删除

    验证缓存文件是否会自动删除的目的是,防止产生大量的缓存文件,占满磁盘.因为,我最近越来越多的使用 cache 来缓存各类 token. 使用的是 file 作为 CACHE_DRIVER CACHE_ ...

  9. plsql developer连接Oracle报错ORA-12154: TNS:could not resolve the connect identifier specified

    今日更改Oracle网络配置文件后使用plsql developer 尝试连接到Oracle出现报错 ORA-12154: TNS:could not resolve the connect iden ...

  10. Memcached和Redis

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ Memcached和Redis ...