题目传送:

Hybrid Crystals

Problem Description
> Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.
>
> — Wookieepedia

Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.

Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.

Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,

* For a light-side crystal of energy level ai, it emits +ai units of energy.
* For a dark-side crystal of energy level ai, it emits −ai units of energy.

Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.

Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.

Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.

First, the Council puts a special crystal of a1=1,b1=N.

Second, the Council has arranged the other n−1 crystals in a way that

ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.

For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

∑i∈Sai∗si=k,

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

 
Input
The first line of the input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).

The next line contains n integer a1,a2,...,an (0≤ai≤103).

The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

 
Output
If there exists such a subset, output "yes", otherwise output "no".
 
Sample Input
2
5 9
1 1 2 3 4
N N N N N

6 -10

1 0 1 2 3 1
N L L L L D
 
Sample Output
yes
no
 
神坑题,打死一大帮懒的,又打死一大帮视力不好的
总而言之前面的ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).
告诉你将组成一个连续区间,证明见此博客  2017多校八 1008题 hdu 6140 Hybrid Crystals 推理
具体做法看官方题解即可
 
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
using namespace std;
const int maxn= ;
int aa[maxn];
char bb[maxn]; int main()
{
int T,n,k,a,b;
scanf("%d",&T);
while(T--)
{
a=;b=;
scanf("%d%d",&n,&k);
for(int i=;i<n;i++)
cin>>aa[i];
for(int i=;i<n;i++)
cin>>bb[i];
for(int i=;i<n;i++)
{
if(bb[i]=='N')
{
b+=abs(aa[i]);
a-=abs(aa[i]);
}
else if(bb[i]=='L')
b+=aa[i];
else
a-=aa[i];
}
if(k>=a&&k<=b)
printf("yes\n");
else
printf("no\n");
}
return ;
}

HDU 6140 17多校8 Hybrid Crystals(思维题)的更多相关文章

  1. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  2. HDU 6098 17多校6 Inversion(思维+优化)

    Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...

  3. hdu 5288||2015多校联合第一场1001题

    pid=5288">http://acm.hdu.edu.cn/showproblem.php?pid=5288 Problem Description OO has got a ar ...

  4. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  5. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  6. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  7. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  8. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

  9. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

随机推荐

  1. Java环境下shiro的测试-认证与授权

    Java环境下shiro的测试 1.导入依赖的核心jar包 <dependency> <groupId>org.apache.shiro</groupId> < ...

  2. python爬虫---BeautifulSoup的用法

    BeautifulSoup是一个灵活的网页解析库,不需要编写正则表达式即可提取有效信息. 推荐使用lxml作为解析器,因为效率更高. 在Python2.7.3之前的版本和Python3中3.2.2之前 ...

  3. Python错误调试-raise、assert

    raise: raise语句手工引发一个异常:,这样做程序不会因异常而终止,而是运行报错 1 "raise" [expression ["," expressi ...

  4. node.js项目多环境配置

    配置多种场景 我们的系统是要在不同的环境下运行的,不同的环境可能是不同的端口号,不同的数据库地址,数据库用户和密码, 并且可能有的需要自动重启有的不需要自动重启. 我们在有一个配置的时候是无法满足这么 ...

  5. Linux -- 基于zookeeper的java api(一)

    Linux -- 基于zookeeper的java api 首先启动你所有的 zkService.sh 查看状态:检查是否启动正确 [root@hu-hadoop2 ~]# zkServer.sh s ...

  6. jQuery-全屏滚动插件【fullPage.js】API 使用方法总结

    jQuery-全屏滚动插件[fullPage.js]API 使用方法总结   jQuery-全屏滚动插件fullPage.js使用方法总结 作者github及下载地址:https://github.c ...

  7. Django之cookie+session

    前言 HTTP协议 是短连接.且状态的,所以在客户端向服务端发起请求后,服务端在响应头 加入cokie响应给浏览器,以此记录客户端状态: cook是来自服务端,保存在浏览器的键值对,主要应用于用户登录 ...

  8. shell历史简介

    shell也叫做终端.命令行. shell的基本作用是供用户输入命令.解析用户所输入命令.呈现命令执行结果. shell有多种不同的shell其语法会有差异,这也是严谨的sh文件会在首行以“#!/bi ...

  9. python字符串内建函数

  10. 批量生成QRcode

    本想在excel批量生成GUID,并生成二维码. //Excel生成guid,uuid 格式:600d65bc-948a---fd8dfeebb1cd =LOWER(CONCATENATE(DEC2H ...