题目传送:

Hybrid Crystals

Problem Description
> Kyber crystals, also called the living crystal or simply the kyber, and known as kaiburr crystals in ancient times, were rare, Force-attuned crystals that grew in nature and were found on scattered planets across the galaxy. They were used by the Jedi and the Sith in the construction of their lightsabers. As part of Jedi training, younglings were sent to the Crystal Caves of the ice planet of Ilum to mine crystals in order to construct their own lightsabers. The crystal's mix of unique lustre was called "the water of the kyber" by the Jedi. There were also larger, rarer crystals of great power and that, according to legends, were used at the heart of ancient superweapons by the Sith.
>
> — Wookieepedia

Powerful, the Kyber crystals are. Even more powerful, the Kyber crystals get combined together. Powered by the Kyber crystals, the main weapon of the Death Star is, having the firepower of thousands of Star Destroyers.

Combining Kyber crystals is not an easy task. The combination should have a specific level of energy to be stablized. Your task is to develop a Droid program to combine Kyber crystals.

Each crystal has its level of energy (i-th crystal has an energy level of ai). Each crystal is attuned to a particular side of the force, either the Light or the Dark. Light crystals emit positive energies, while dark crystals emit negative energies. In particular,

* For a light-side crystal of energy level ai, it emits +ai units of energy.
* For a dark-side crystal of energy level ai, it emits −ai units of energy.

Surprisingly, there are rare neutral crystals that can be tuned to either dark or light side. Once used, it emits either +ai or −ai units of energy, depending on which side it has been tuned to.

Given n crystals' energy levels ai and types bi (1≤i≤n), bi=N means the i-th crystal is a neutral one, bi=L means a Light one, and bi=D means a Dark one. The Jedi Council asked you to choose some crystals to form a larger hybrid crystal. To make sure it is stable, the final energy level (the sum of the energy emission of all chosen crystals) of the hybrid crystal must be exactly k.

Considering the NP-Hardness of this problem, the Jedi Council puts some additional constraints to the array such that the problem is greatly simplified.

First, the Council puts a special crystal of a1=1,b1=N.

Second, the Council has arranged the other n−1 crystals in a way that

ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).

[cond] evaluates to 1 if cond holds, otherwise it evaluates to 0.

For those who do not have the patience to read the problem statements, the problem asks you to find whether there exists a set S⊆{1,2,…,n} and values si for all i∈S such that

∑i∈Sai∗si=k,

where si=1 if the i-th crystal is a Light one, si=−1 if the i-th crystal is a Dark one, and si∈{−1,1} if the i-th crystal is a neutral one.

 
Input
The first line of the input contains an integer T, denoting the number of test cases.

For each test case, the first line contains two integers n (1≤n≤103) and k (|k|≤106).

The next line contains n integer a1,a2,...,an (0≤ai≤103).

The next line contains n character b1,b2,...,bn (bi∈{L,D,N}).

 
Output
If there exists such a subset, output "yes", otherwise output "no".
 
Sample Input
2
5 9
1 1 2 3 4
N N N N N

6 -10

1 0 1 2 3 1
N L L L L D
 
Sample Output
yes
no
 
神坑题,打死一大帮懒的,又打死一大帮视力不好的
总而言之前面的ai≤∑j=1i−1aj[bj=N]+∑j=1i−1aj[bi=L∩bj=L]+∑j=1i−1aj[bi=D∩bj=D](2≤i≤n).
告诉你将组成一个连续区间,证明见此博客  2017多校八 1008题 hdu 6140 Hybrid Crystals 推理
具体做法看官方题解即可
 
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
using namespace std;
const int maxn= ;
int aa[maxn];
char bb[maxn]; int main()
{
int T,n,k,a,b;
scanf("%d",&T);
while(T--)
{
a=;b=;
scanf("%d%d",&n,&k);
for(int i=;i<n;i++)
cin>>aa[i];
for(int i=;i<n;i++)
cin>>bb[i];
for(int i=;i<n;i++)
{
if(bb[i]=='N')
{
b+=abs(aa[i]);
a-=abs(aa[i]);
}
else if(bb[i]=='L')
b+=aa[i];
else
a-=aa[i];
}
if(k>=a&&k<=b)
printf("yes\n");
else
printf("no\n");
}
return ;
}

HDU 6140 17多校8 Hybrid Crystals(思维题)的更多相关文章

  1. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  2. HDU 6098 17多校6 Inversion(思维+优化)

    Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...

  3. hdu 5288||2015多校联合第一场1001题

    pid=5288">http://acm.hdu.edu.cn/showproblem.php?pid=5288 Problem Description OO has got a ar ...

  4. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  5. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  6. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  7. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  8. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

  9. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

随机推荐

  1. python-flask-SQLAlchemy-Utils组件

    SQLAlchemy-Utils,提供choice功能 定义: # pip3 install sqlalchemy-utils from sqlalchemy_utils import ChoiceT ...

  2. ECharts饼状图添加事件

    和柱状图添加事件没有区别,详情如下: <!DOCTYPE html> <html> <head> <meta http-equiv="Content ...

  3. python, 在信用评级中,计算KS statistic值

    # -*- coding: utf-8 -*- import pandas as pd from sklearn.grid_search import GridSearchCV from sklear ...

  4. nginx 拒绝本地ip访问

    server { listen default_server; server_name _; server_name localhost; ; }

  5. 【转】JavaScript数组方法大全

    数组在笔试题中出现的概率最高的类型之一,JavaScript中的数组与其他语言中的数组有些区别,为了方便以后查看数组的方法,现将对数组的操作方法进行汇总整理. 数组创建 JavaScript中创建数组 ...

  6. windows7时间同步设置

    1. 设置同步源 服务器修改为本车的104的ip地址,例如23车,手动输入 96.3.123.104 2. 设置同步周期. 注册表法 在“运行”框输入“Regedit”进入注册表编辑器 这种方法是通过 ...

  7. js 中class选择器,addClass,removeClass,hasClass,toggleClass,getByClass

    <!doctype html> <html> <head> <meta charset="utf-8"> <meta name ...

  8. CSS技巧-文字分散对齐的方法

    下面的代码可以在IE中实现文字分散对齐: <table width="300" align="center">    <tr>      ...

  9. day12 生成器和各种推导式

    今天主要学习了 1.生成器 2.生成器函数 3.各种推导式(比较诡异,理解了很简单,不理解很难) 4.生成器表达式(重点) 一.生成器 def func(): print'我叫周润发' return ...

  10. 使用STL的next_permutation函数

    文章作者:姜南(Slyar) 文章来源:Slyar Home (www.slyar.com) 转载请注明,谢谢合作. 下午研究了一下全排列算法,然后发现C++的STL有一个函数可以方便地生成全排列,这 ...