SPARKR,对RDD操作的介绍
(转载)SPARKR,对RDD操作的介绍
原以为,用sparkR不能做map操作, 搜了搜发现可以。 lapply等同于map, 但是不能操作spark RDD. spark2.0以后, sparkR增加了 dapply, dapplycollect 可以操作spark RDD.
原文地址: http://www.2cto.com/kf/201605/508312.html
目前SparkR RDD实现了Scala RDD API中的大部分方法,可以满足大多数情况下的使用需求:
SparkR支持的创建RDD的方式有:
从R list或vector创建RDD(parallelize())
从文本文件创建RDD(textFile())
从object文件载入RDD(objectFile())
SparkR支持的RDD的操作有:
数据缓存,持久化控制:cache(),persist(),unpersist()
数据保存:saveAsTextFile(),saveAsObjectFile()
常用的数据转换操作,如map(),flatMap(),mapPartitions()等
数据分组、聚合操作,如partitionBy(),groupByKey(),reduceByKey()等
RDD间join操作,如join(), fullOuterJoin(), leftOuterJoin()等
排序操作,如sortBy(), sortByKey(), top()等
Zip操作,如zip(), zipWithIndex(), zipWithUniqueId()
重分区操作,如coalesce(), repartition()
其它杂项方法
和Scala RDD API相比,SparkR RDD API有一些适合R的特点:
SparkR RDD中存储的元素是R的数据类型。
SparkR RDD transformation操作应用的是R函数。
RDD是一组分布式存储的元素,而R是用list来表示一组元素的有序集合,因此SparkR将RDD整体上视为一个分布式的list。Scala API 中RDD的每个分区的数据由iterator来表示和访问,而在SparkR RDD中,每个分区的数据用一个list来表示,应用到分区的转换操作,如mapPartitions(),接收到的分区数据是一个list而不是iterator。
为了符合R用户经常使用lapply()对一个list中的每一个元素应用某个指定的函数的习惯,SparkR在RDD类上提供了SparkR专有的transformation方法:lapply()、lapplyPartition()、lapplyPartitionsWithIndex(),分别对应于Scala API的map()、mapPartitions()、mapPartitionsWithIndex()。
DataFrame APISpark 1.3版本引入了DataFrame API。相较于RDD API,DataFrame API更受社区的推崇,这是因为:
DataFrame的执行过程由Catalyst优化器在内部进行智能的优化,比如过滤器下推,表达式直接生成字节码。
基于Spark SQL的外部数据源(external data sources) API访问(装载,保存)广泛的第三方数据源。
使用R或Python的DataFrame API能获得和Scala近乎相同的性能。而使用R或Python的RDD API的性能比起Scala RDD API来有较大的性能差距。
Spark的DataFrame API是从R的 Data Frame数据类型和Python的pandas库借鉴而来,因而对于R用户而言,SparkR的DataFrame API是很自然的。更重要的是,SparkR DataFrame API性能和Scala DataFrame API几乎相同,所以推荐尽量用SparkR DataFrame来编程。
目前SparkR的DataFrame API已经比较完善,支持的创建DataFrame的方式有:
从R原生data.frame和list创建
从SparkR RDD创建
从特定的数据源(JSON和Parquet格式的文件)创建
从通用的数据源创建
将指定位置的数据源保存为外部SQL表,并返回相应的DataFrame
从Spark SQL表创建
从一个SQL查询的结果创建
支持的主要的DataFrame操作有:
·数据缓存,持久化控制:cache(),persist(),unpersist()
数据保存:saveAsParquetFile(), saveDF() (将DataFrame的内容保存到一个数据源),saveAsTable() (将DataFrame的内容保存存为数据源的一张表)
集合运算:unionAll(),intersect(), except()
Join操作:join(),支持inner、full outer、left/right outer和semi join。
数据过滤:filter(), where()
排序:sortDF(), orderBy()
列操作:增加列- withColumn(),列名更改- withColumnRenamed(),选择若干列 -select()、selectExpr()。为了更符合R用户的习惯,SparkR还支持用$、[]、[[]]操作符选择列,可以用$<列名> <- 的语法来增加、修改和删除列
RDD map类操作:lapply()/map(),flatMap(),lapplyPartition()/mapPartitions(),foreach(),foreachPartition()
数据聚合:groupBy(),agg()
转换为RDD:toRDD(),toJSON()
转换为表:registerTempTable(),insertInto()
取部分数据:limit(),take(),first(),head()
编程示例总体上看,SparkR程序和Spark程序结构很相似。
基于RDD API的示例
要基于RDD API编写SparkR程序,首先调用sparkR.init()函数来创建SparkContext。然后用SparkContext作为参数,调用parallelize()或者textFile()来创建RDD。有了RDD对象之后,就可以对它们进行各种transformation和action操作。下面的代码是用SparkR编写的Word Count示例:
library(SparkR) #初始化SparkContext sc <- sparkR.init("local", "RWordCount") #从HDFS上的一个文本文件创建RDD lines <- textFile(sc, "hdfs://localhost:9000/my_text_file") #调用RDD的transformation和action方法来计算word count #transformation用的函数是R代码 words <- flatMap(lines, function(line) { strsplit(line, " ")[[1]] }) wordCount <- lapply(words, function(word) { list(word, 1L) }) counts <- reduceByKey(wordCount, "+", 2L) output <- collect(counts)
基于DataFrame API的示例
基于DataFrame API的SparkR程序首先创建SparkContext,然后创建SQLContext,用SQLContext来创建DataFrame,再操作DataFrame里的数据。下面是用SparkR DataFrame API计算平均年龄的示例:library(SparkR) #初始化SparkContext和SQLContext sc <- sparkR.init("local", "AverageAge") sqlCtx <- sparkRSQL.init(sc) #从当前目录的一个JSON文件创建DataFrame df <- jsonFile(sqlCtx, "person.json") #调用DataFrame的操作来计算平均年龄 df2 <- agg(df, age="avg") averageAge <- collect(df2)[1, 1]
对于上面两个示例要注意的一点是SparkR RDD和DataFrame API的调用形式和Java/Scala API有些不同。假设rdd为一个RDD对象,在Java/Scala API中,调用rdd的map()方法的形式为:rdd.map(…),而在SparkR中,调用的形式为:map(rdd, …)。这是因为SparkR使用了R的S4对象系统来实现RDD和DataFrame类。
架构SparkR主要由两部分组成:SparkR包和JVM后端。SparkR包是一个R扩展包,安装到R中之后,在R的运行时环境里提供了RDD和DataFrame API。
图1 SparkR软件栈
SparkR的整体架构如图2所示。
图2 SparkR架构
R JVM后端SparkR API运行在R解释器中,而Spark Core运行在JVM中,因此必须有一种机制能让SparkR API调用Spark Core的服务。R JVM后端是Spark Core中的一个组件,提供了R解释器和JVM虚拟机之间的桥接功能,能够让R代码创建Java类的实例、调用Java对象的实例方法或者Java类的静态方法。JVM后端基于Netty实现,和R解释器之间用TCP socket连接,用自定义的简单高效的二进制协议通信。
R Worker
SparkR RDD API和Scala RDD API相比有两大不同:SparkR RDD是R对象的分布式数据集,SparkR RDD transformation操作应用的是R函数。SparkR RDD API的执行依赖于Spark Core但运行在JVM上的Spark Core既无法识别R对象的类型和格式,又不能执行R的函数,因此如何在Spark的分布式计算核心的基础上实现SparkR RDD API是SparkR架构设计的关键。
SparkR设计了Scala RRDD类,除了从数据源创建的SparkR RDD外,每个SparkR RDD对象概念上在JVM端有一个对应的RRDD对象。RRDD派生自RDD类,改写了RDD的compute()方法,在执行时会启动一个R worker进程,通过socket连接将父RDD的分区数据、序列化后的R函数以及其它信息传给R worker进程。R worker进程反序列化接收到的分区数据和R函数,将R函数应到到分区数据上,再把结果数据序列化成字节数组传回JVM端。
从这里可以看出,与Scala RDD API相比,SparkR RDD API的实现多了几项开销:启动R worker进程,将分区数据传给R worker和R worker将结果返回,分区数据的序列化和反序列化。这也是SparkR RDD API相比Scala RDD API有较大性能差距的原因。
DataFrame API的实现
由于SparkR DataFrame API不需要传入R语言的函数(UDF()方法和RDD相关方法除外),而且DataFrame中的数据全部是以JVM的数据类型存储,所以和SparkR RDD API的实现相比,SparkR DataFrame API的实现简单很多。R端的DataFrame对象就是对应的JVM端DataFrame对象的wrapper,一个DataFrame方法的实现基本上就是简单地调用JVM端DataFrame的相应方法。这种情况下,R Worker就不需要了。这是使用SparkR DataFrame API能获得和ScalaAPI近乎相同的性能的原因。
当然,DataFrame API还包含了一些RDD API,这些RDD API方法的实现是先将DataFrame转换成RDD,然后调用RDD 的相关方法。
展望SparkR目前来说还不是非常成熟,一方面RDD API在对复杂的R数据类型的支持、稳定性和性能方面还有较大的提升空间,另一方面DataFrame API在功能完备性上还有一些缺失,比如对用R代码编写UDF的支持、序列化/反序列化对嵌套类型的支持,这些问题相信会在后续的开发中得到改善和解决。如何让DataFrame API对熟悉R原生Data Frame和流行的R package如dplyr的用户更友好是一个有意思的方向。此外,下一步的开发计划包含几个大的特性,比如普渡大学正在做的在SparkR中支持Spark Streaming,还有Databricks正在做的在SparkR中支持ML pipeline等。SparkR已经成为Spark的一部分,相信社区中会有越来越多的人关注并使用SparkR,也会有更多的开发者参与对SparkR的贡献,其功能和使用性将会越来越强。
总结Spark将正式支持R API对熟悉R语言的数据科学家是一个福音,他们可以在R中无缝地使用RDD和Data Frame API,借助Spark内存计算、统一软件栈上支持多种计算模型的优势,高效地进行分布式数据计算和分析,解决大规模数据集带来的挑战。工欲善其事,必先利其器,SparkR必将成为数据科学家在大数据时代的又一门新利器。
SPARKR,对RDD操作的介绍的更多相关文章
- (转载)SPARKR,对RDD操作的介绍
原以为,用sparkR不能做map操作, 搜了搜发现可以. lapply等同于map, 但是不能操作spark RDD. spark2.0以后, sparkR增加了 dapply, dapplycol ...
- [.NET] 开头不讲"Hello Word",读尽诗书也枉然 : Word 操作组件介绍 - Spire.Doc
开头不讲"Hello Word",读尽诗书也枉然 : Word 操作组件介绍 - Spire.Doc [博主]反骨仔 [原文地址]http://www.cnblogs.com/li ...
- Spark学习(一)--RDD操作
标签(空格分隔): 学习笔记 Spark编程模型的两种抽象:RDD(Resilient Distributed Dataset)和两种共享变量(支持并行计算的广播变量和累加器). RDD RDD是一种 ...
- RDD操作
RDD操作 1.对一个数据为{1,2,3,3}的RDD进行基本的RDD转化操作 函数名 目的 示例 结果 map() 函数应用于RDD中的每个元素 rdd.map(x=>x+1) {2,3,4, ...
- sqlite数据库操作详细介绍 增删改查,游标
sqlite数据库操作详细介绍 增删改查,游标 本文来源于www.ifyao.com禁止转载!www.ifyao.com Source code package com.example ...
- thinkPHP 空模块和空操作、前置操作和后置操作 详细介绍(十四)
原文:thinkPHP 空模块和空操作.前置操作和后置操作 详细介绍(十四) 本章节:介绍 TP 空模块和空操作.前置操作和后置操作 详细介绍 一.空模块和空操作 1.空操作 function _em ...
- Spark编程模型及RDD操作
转载自:http://blog.csdn.net/liuwenbo0920/article/details/45243775 1. Spark中的基本概念 在Spark中,有下面的基本概念.Appli ...
- Spark 键值对RDD操作
键值对的RDD操作与基本RDD操作一样,只是操作的元素由基本类型改为二元组. 概述 键值对RDD是Spark操作中最常用的RDD,它是很多程序的构成要素,因为他们提供了并行操作各个键或跨界点重新进行数 ...
- go语言之进阶篇文件常用操作接口介绍和使用
一.文件常用操作接口介绍 1.创建文件 法1: 推荐用法 func Create(name string) (file *File, err Error) 根据提供的文件名创建新的文件,返回一个文件对 ...
随机推荐
- Playmaker全面实践教程之playMaker编辑器
Playmaker全面实践教程之playMaker编辑器 playMaker编辑器 playMaker编辑器是制作状态机的主要视图,如图1-23所示.只有熟悉此视图,读者才能更加快捷的使用Playma ...
- ubuntu10.4搭建eclipse for c++环境
以下操作:经过验证,安装完成后,使用eclipse建立C++工程,直接编译就能运行了:说明:(1)不建议使用下载eclipse for java版本和CDT的方式来搭建环境,因为我没有安装成功:(2) ...
- Codeforces.788C.The Great Mixing(bitset DP / BFS)
题目链接 \(Description\) 有k种饮料,浓度Ai给出,求用最少的体积配成n/1000浓度的饮料. \(Solution\) 根据题意有方程 (A1x1+A2x2+...+Anxn)/[( ...
- node+koa2 使用ejs模版
1.进入项目下,npm install -save ejs 2.app.js加入: const ejs = require('ejs'); app.use(views(__dirname + '/vi ...
- 20172302 《Java软件结构与数据结构》第三周学习总结
2018年学习总结博客总目录:第一周 第二周 第三周 教材学习内容总结 第五章 队列 1.队列是一种线性集合,其元素从一端加入,从另一端删除:队列元素是按先进先出(FIFO(First in Firs ...
- 支付宝集成遇到"_EVP_DecodeBlock",referenced from:报错
遇到问题报错如下: 调试了好多遍,始终不行,检测各种依赖库,发现并没有少什么.后来发现支付宝demo里比文档讲解里面多两个.a文件 直接加上就好了
- Voltage Level-Shifter Output Waveform
http://www.cypress.com/knowledge-base-article/interfacing-sram-jtag-signals-using-voltage-level-shif ...
- 20个有用的linux命令行技巧
20 Unix Command Line Tricks – Part I http://www.cyberciti.biz/open-source/command-line-hacks/20-unix ...
- AngularJS中使用$http对MongoLab数据表进行增删改查
本篇体验使用AngularJS中的$http对MongoLab数据表进行增删改查. 主页面: <button ng-click="loadCourse()">Load ...
- android:ProgressDialog控件
ProgressDialog 和 AlertDialog 有点类似,都可以在界面上弹出一个对话框,都能够屏蔽 掉其他控件的交互能力.不同的是,ProgressDialog 会在对话框中显示一个进度条, ...