Some Formulas.
待填。。
计数问题
在一个有\(n\)个点的完全图(complete graph)中有多少棵生成树
对每个\(n>0\),\({1,2,\cdots,n}\)上的完全图恰好有\(n^{n-2}\)棵生成树。
证明见《具体数学(第二版)》7.6 指数型生成函数。
**[Update] **这不就是Prufer序列的结论吗= =。
排列组合
1. 当 \(C_n^m\) 为奇数时,\((n\&m)==m\)
证明:因为是\(\mod 2\),所以考虑Lucas定理。
在\(\mod 2\)的情况下\(C(n,m)\)最后只会化成4种情况: \(C(0,1),C(0,0),C(1,0),C(1,1)\),后三种情况都是1,\(C(0,1)\)不存在(0),所以如果\(C(n,m)\mod 2\)为偶数,那么一定在Lucas的过程中出现了\(C(0,1)\)。
\(\mod 2\)的过程容易想到位运算。
由\(C(n,m)\mod 2=C(n\%2,m\%2)*C(n/2,m/2)=C(n\&1,m\&1)*C(n>>1,m>>1)\) 可知,若\(C(n,m)\)为奇数,那么\(m\)一定是\(n\)二进制1的子集。
2. $$\sum_{i=0}n\frac{1}{i!(n-i)!}=\frac{2n}{n!}$$
https://www.cnblogs.com/SovietPower/p/9425230 (这好像是某组合公式吧)
3. Catalan数应用扩展
https://blog.csdn.net/qq_33435265/article/details/68954205
4. 组合数的各种性质及定理
https://blog.csdn.net/litble/article/details/75913032
数论
1. 计算\(n!\)中质因子p的个数的公式(\(\varepsilon_{p}(n!)\))
\]
递归式为$$f(n)=f(\left\lfloor\frac{n}{p}\right\rfloor)+\left\lfloor\frac{n}{p}\right\rfloor$$
for(LL i=n; i; i/=p) k+=i/p;
应用:分解阶乘的质因数,如BZOJ1005、CF 1114C、扩展Lucas。
可由\(\varepsilon_2(n!)\)推广到任意素数\(p\)?即$$\varepsilon_p(n!)=\left\lfloor\frac{n}{p}\right\rfloor +\left\lfloor\frac{n}{p^2}\right\rfloor +\left\lfloor\frac{n}{p^3}\right\rfloor +\cdots=\sum_{k\geq1}\left\lfloor\frac{n}{p^k}\right\rfloor$$
\(\varepsilon_p(n!)\)有多大?从求和式中直接去掉底,然后对无穷几何级数求和,可以得到一个简单(然而很好的)上界:
\(\begin{aligned}\varepsilon_p(n!)&<\frac{n}{p}+\frac{n}{p^2}+\frac{n}{p^3}+\cdots\\&=\frac{n}{p}\left(1+\frac{1}{p}+\frac{1}{p^2}+\cdots\right)\\&=\frac{n}{p}\left(\frac{p}{p-1}\right)\\&=\frac{n}{p-1}\end{aligned}\)
——from 《具体数学(第二版)》
有兴趣的还可以看直尺函数(ruler function)。
2. 线性求阶乘逆元
因为\(((n-1)!)^{-1}=(n!)^{-1}*n\)。应用见排列组合2.
inv[n]=FP(fac[n],mod-2);
for(int i=n-1; ~i; --i) inv[i]=inv[i+1]*(i+1)%mod;
3. \(n\)为奇数时,\(\varphi(n)=\varphi(2n)\)。
Some Formulas.的更多相关文章
- たくさんの数式 / Many Formulas AtCoder - 2067 (枚举二进制)
Problem Statement You are given a string S consisting of digits between 1 and 9, inclusive. You can ...
- AtCoder Beginner Contest 045 C - たくさんの数式 / Many Formulas
Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement You are given a string ...
- Codeforces 424 C. Magic Formulas
xor是满足交换律的,展开后发现仅仅要能高速求出 [1mod1....1modn],....,[nmod1...nmodn]的矩阵的xor即可了....然后找个规律 C. Magic Formulas ...
- CodeForce 424C Magic Formulas
这个题就是求出给的公式的结果. 仅仅要知道异或运算满足交换律跟结合律即可了.之后就是化简公式. #include<map> #include<string> #include& ...
- Many Formulas
You are given a string S consisting of digits between 1 and 9, inclusive. You can insert the letter ...
- codeforce-424C. Magic Formulas(数学)
C. Magic Formulas time limit per test:2 seconds memory limit per test:256 megabytes input stan ...
- Experimental Educational Round: VolBIT Formulas Blitz
cf的一次数学场... 递推 C 题意:长度<=n的数只含有7或8的个数 分析:每一位都有2种可能,累加不同长度的方案数就是总方案数 组合 G 题意:将5个苹果和3个梨放进n个不同的盒子里的方案 ...
- Codeforces Round #242 (Div. 2) C. Magic Formulas
解题思路是: Q=q1^q2.......^qn = p1^p2......^pn^((1%1)^....(1%n))^((2%1)^......(2%n))^.... 故Q的求解过程分成两部分 第一 ...
- Codeforces Round #242 (Div. 2) C. Magic Formulas (位异或性质 找规律)
题目 比赛的时候找出规律了,但是找的有点慢了,写代码的时候出了问题,也没交对,还掉分了.... 还是先总结一下位移或的性质吧: 1. 交换律 a ^ b = b ^ a 2. 结合律 (a^b) ^ ...
- Npoi 导出Excel 下拉列表异常: String literals in formulas can't be bigger than 255 Chars ASCII
代码: public static void dropDownList(string[] datas, string filePath) { HSSFWorkbook workbook = new H ...
随机推荐
- 001_深度剖析什么是 SLI、SLO和SLA?
前言 SLO和SLA是大家常见的两个名词:服务等级目标和服务等级协议. 云计算时代,各大云服务提供商都发布有自己服务的SLA条款,比如Amazon的EC2和S3服务都有相应的SLA条款.这些大公司的S ...
- mysql更新字段值提示You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column To disable safe mode
1 引言 当更新字段缺少where语句时,mysql会提示一下错误代码: Error Code: 1175. You are using safe update mode and you tried ...
- 同时装了Python3和Python2,怎么用pip
作者:匿名用户链接:https://www.zhihu.com/question/21653286/answer/95532074来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- Python-JS基础(基础结构~函数)
程序本质上分为三大结构: 顺序结构.分支结构.循环结构JavaScript中的程序结构也是这样,下面我们来分别介绍JS中的三种基本程序结构:我们上篇博客中介绍到的使用逻辑运算符&&实现 ...
- 温故而知新--JavaScript书摘(二)
前言 毕业到入职腾讯已经差不多一年的时光了,接触了很多项目,也积累了很多实践经验,在处理问题的方式方法上有很大的提升.随着时间的增加,愈加发现基础知识的重要性,很多开发过程中遇到的问题都是由最基础的知 ...
- python 全栈开发,Day58(bootstrap组件,bootstrap JavaScript 插件,后台模板,图表插件,jQuery插件库,Animate.css,swiper,运行vue项目)
一.bootstrap组件 无数可复用的组件,包括字体图标.下拉菜单.导航.警告框.弹出框等更多功能. 组件和插件的区别? 插件:一个功能,比如js文件 组件:html css js 组件包含插件 面 ...
- 2017-2018-2 20155309 南皓芯 Exp3 免杀原理与实践
报告内容 2.1.基础问题回答 (1)杀软是如何检测出恶意代码的 ? 1:基于特征码 一段特征码就是一段或多段数据.(如果一个可执行文件(或其他运行的库.脚本等)包含这样的数据则被认为是恶意代码) 杀 ...
- Gitlab库已损坏前端显示500错误解决方法
1.问题起因 办公网机房意外断掉,导致gitlab库文件损坏.开发打开gitlab显示500 2.查看日志 命令查看:gitlab-ctl tail 或者手动查看:/var/log/gitlab/gi ...
- flex布局简介
一.概述 浮动在移动布局中不再重要,flex盒模型越来越重要. flexbox经历过三个版本,主要区别是2009年到2012年之间的语法变化. 最新的语法和现在规范是同步的(例display:flex ...
- C#: 执行批处理文件(*.bat)的方法
static void Main(string[] args) { Process proc = null; try { proc = new Process(); proc.StartInfo.Fi ...