介绍一种算法,它可以在线性时间和常数空间内,在一个数组内找出出现次数超过一半的某个数字。

要解决这个问题并不难,可以使用排序或哈希,但是这两种算法都不能同时满足时间或空间的要求。

然而,该算法(A Linear Time Majority Vote Algorithm )却可以在同时满足这两个条件的情况下完美地解决问题。

现在将该算法简单描述如下:

对于数组中出现的某个数字设为待定数字,如果它出现则将其出现次数加一,如果没有出现则减一,如果减至零则将当前数字更换为新的待定数字。这样线性遍历之后可以剩下的待定数字,再用一遍遍历验证它是否满足条件。

举例:

{1,2,2,2,3}最后得到2,经验证满足条件

{1,2,3,4}最后得到4,经验证不满足条件

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        ,m=;
        ;i<nums.size();++i)
        {
            if(nums[i]==a) ++m;
            ) a=nums[i],m=;
            else --m;
        }
        return a;
    }
};

这个算法并不太容易理解。

我通俗的解释一下,假设某个位置的数字都代表它要投的一个候选人,如果该位置的投的候选人与当前的候选人不同则意味着对当前候选人投反对票。由于最终满足条件的候选人次数大于n/2,所以其余所有人的反对票也不及它的票数,所以这样做可以得到正确结果。当然如果候选人次数小于等于n/2,就有可能被反对掉。

这个问题可以进行拓展。

如何在线性时间和常数空间内,找到出现次数超过数组大小的三分之一的两个数字。

我们同样可以使用这个算法解决,由于该两个数的出现次数超过三分之一,余下的部分不足以将它们反对掉。

class Solution {
public:
    vector<int> majorityElement(vector<int>& nums) {
        ,b=,n=,m=;
        ;i<nums.size();++i)
        {
            if(nums[i]==a) ++m;
            else if(nums[i]==b) ++n;
            ) a=nums[i],m=;
            ) b=nums[i],n=;
            else --n,--m;
        }
        m=n=;
        ;i<nums.size();++i)
        {
            if(nums[i]==a) ++m;
            else if(nums[i]==b) ++n;
        }
        vector<int> result;
        ) result.push_back(a);
        ) result.push_back(b);
        return result;
    }
};

再进一步扩展,只要是在n个数字中寻找出现次数超过n/(m+1)的m个数字都可以这样解决。

参考 http://blog.csdn.net/chfe007/article/details/42919017

A Linear Time Majority Vote Algorithm的更多相关文章

  1. Boyer-Moore Majority Vote Algorithm

    介绍算法之前, 我们来看一个场景, 假设您有一个未排序的列表.您想知道列表中是否存在一个数量占列表的总数一半以上的元素, 我们称这样一个列表元素为 Majority 元素.如果有这样一个元素, 求出它 ...

  2. Boyer and Moore Fast majority vote algorithm(快速选举算法)

    问题来来自于leetcode上的一道题目,https://leetcode.com/problems/majority-element/,大意是是找出一个数组中,出现次数超过一个半的数字,要求是O(n ...

  3. LeetCode 169. Majority Element - majority vote algorithm (Java)

    1. 题目描述Description Link: https://leetcode.com/problems/majority-element/description/ Given an array ...

  4. Moore majority vote algorithm(摩尔投票算法)

    Boyer-Moore majority vote algorithm(摩尔投票算法) 简介 Boyer-Moore majority vote algorithm(摩尔投票算法)是一种在线性时间O( ...

  5. leetcode 169. Majority Element 多数投票算法(Boyer-Moore Majority Vote algorithm)

    题目: Given an array of size n, find the majority element. The majority element is the element that ap ...

  6. 算法复习_线性时间求解Majority Vote Algorithm问题

    题目来源于Leecode上的Majority Element问题 Majority Element:在一个序列中出现了至少n/2的下界次 使用排序算法取中位数则需要Nlogn http://www.c ...

  7. [LeetCode] 229. Majority Element II 多数元素 II

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. Note: The a ...

  8. leetcode 229 Majority Element II

    这题用到的基本算法是Boyer–Moore majority vote algorithm wiki里有示例代码 1 import java.util.*; 2 public class Majori ...

  9. leetcode 169 Majority Element 冰山查询

    Given an array of size n, find the majority element. The majority element is the element that appear ...

随机推荐

  1. UML问题

    1.在创建协作图时需要先确定参与者,而协作图的工具栏里是没有Actor的,这是需要先new Actor,然后把其拖动到工作区:实验过程中发现必须创建在用例视图下,若是创建在逻辑试图下那么根本无法继续操 ...

  2. JAVA简单的SWING及AWT

    慢慢找感觉~~ package SwingGui.sky.com; import javax.swing.*; import java.awt.*; import java.awt.event.*; ...

  3. BZOJ2749: [HAOI2012]外星人

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 377  Solved: 199[Submit][Status] ...

  4. jstack(Stack Trace for Java)

    功能   用于生成虚拟机当前时刻的线程快照(一般称为threaddump或javacore文件).线程快照就是当前虚拟机内每一条线程正在执行的方法堆栈的集合,生成线程快照的主要目的是定位线程出现长时间 ...

  5. 【二分】XMU 1587 中位数

    题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1587 题目大意: 求两个长度为n(n<=109)的有序序列合并后的中位数.序列中 ...

  6. 3Sum Closest——LeetCode

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  7. HDOJ(HDU) 2097 Sky数(进制)

    Problem Description Sky从小喜欢奇特的东西,而且天生对数字特别敏感,一次偶然的机会,他发现了一个有趣的四位数2992,这个数,它的十进制数表示,其四位数字之和为2+9+9+2=2 ...

  8. Java学习日记9-异常

    异常(Exception) 一.什么是异常? 异常就是程序中的错误,比如数组越界.访问空指针等.在Java中,一切皆对象,异常也不例外.所有的异常都是派生于Throwable类的一个实例对象. 二.异 ...

  9. FSharp.Data 程序集之 Http

    FSharp.Data 程序集之 Http (** # F# Data: HTTP Utilities .NET 库提供了强大的 API,产生和发送 HTTP WEB 请求,有两个类型,一个简单,`W ...

  10. 二、Linux文件系统之内存管理

    虚拟内存  32位:4G 64位:2^64 内存管理: 进程管理 自动分配和管理 支持模块化程序设计 保护和访问控制 长期存储 虚拟内存  <---MMU-->物理内存