BZOJ_3527_[ZJOI2014]_力_(FFT+卷积)
描述
题面:
提交:
http://www.lydsy.com/JudgeOnline/problem.php?id=3527
给出n个数字(q1~qn),定义$$F_i=\sum_{j<i}{q_iq_j\over (i-j)^2}-\sum_{j>i}{q_iq_j\over (i-j)^2}$$
然后设$$E_i={F_i\over q_i}$$
求 \(E_i\)
分析
我们先把式子化简一下$$E_i=\sum_{j<i}{q_j\over (i-j)^2}-\sum_{j>i}{q_j\over (i-j)^2}$$
然后我们令$$f[i]=q_i,g[i]={1\over i^2}$$
然后发现左边好像卷积的形式$$c_i=\sum_{j=0}^ia_jb_{i-j}$$
但是没有 \(j=0\) 和 \(j=i\) 的情况.没关系,我们令 \(f[i]=0 , g[i]=0\) .
这样的话原式\[\sum_{j=1}^{i-1}{q_j\over (i-j)^2}\]就和\[\sum_{j=0}^i{q_j\over (i-j)^2}\]相等了
这样左边就是\[A_i=\sum_{j=0}^if[j]g[i-j]\]的卷积了
我们来看右边,右边也很有成为卷积的潜质啊,可是不满足\(0\le{j}\le{i}\)啊.没关系,我们发现左边的式子和右边的式子正好相反,所以我们考虑"倒过来",
于是就有原式\[\sum_{j=i+1}^nf[j]g[i-j]\]等价于\[\sum_{j=i}^nf[j]g[j-i]\]又等价于\[\sum_{j=0}^{n-i}f[n-j]g[n-j-i]\]
这个变化可以通过换元实现.我们可以设\(f'[x]=f'[n-x]\),这样的话右式就等于$$\sum_{j=0}^{n-i}f'[j]g[n-i-j]$$
这样右边就是$$B_i=\sum_{j=0}^if'[j]g[i-j]$$的卷积了
最后$$E_i=A_i+B_{n-i}$$
开心地FFT吧~
注意:
1.由于数组是从1开始的,预留了\(f[0]与g[0]\)的位置,所以长度应该+1,所以len=2*n-1+1+1=2*n+1.
#include <bits/stdc++.h>
using namespace std; const int maxn=;
const double pi=acos(-1.0);
int n,len;
int rev[maxn];
double f[maxn],f_[maxn],g[maxn],ans[maxn];
struct cp{
double r,i;
cp(double r=,double i=):r(r),i(i){}
cp operator + (const cp &x) const { return cp(r+x.r,i+x.i); }
cp operator - (const cp &x) const { return cp(r-x.r,i-x.i); }
cp operator * (const cp &x) const { return cp(r*x.r-i*x.i,r*x.i+i*x.r); }
}a[maxn],b[maxn],c[maxn],A[maxn];
void brc(int &len){
memset(rev,-,sizeof rev);
int k=,l=;
while(k<len) k<<=, l++;
len=k;
for(int i=;i<len-;i++){
if(rev[i]!=-) continue;
int x=i,y=,m=l;
while(m--) y<<=, y|=(x&), x>>=;
rev[i]=y; rev[y]=i;
}
}
void dft(cp *a,int n,int op){
for(int i=;i<n-;i++) A[rev[i]]=a[i];
for(int i=;i<n-;i++) a[i]=A[i];
for(int m=;m<=n;m<<=){
cp wn(cos(2.0*pi/m*op),sin(2.0*pi/m*op));
for(int i=;i<n;i+=m){
cp w(1.0); int k=m>>;
for(int j=;j<k;j++){
cp u=a[i+j],t=w*a[i+j+k];
a[i+j]=u+t;
a[i+j+k]=u-t;
w=w*wn;
}
}
}
if(op==-)for(int i=;i<n;i++) a[i].r/=n;
}
void fft(double *x,double *y,cp *a,cp* b,cp *c,int n){
for(int i=;i<len;i++) a[i]=cp(x[i]), b[i]=cp(y[i]);
dft(a,n,); dft(b,n,);
for(int i=;i<n;i++) c[i]=a[i]*b[i];
dft(c,n,-);
}
int main(){
scanf("%d",&n); len=*n+;
brc(len);
for(int i=;i<=n;i++) scanf("%lf",&f[i]);
for(int i=;i<=n;i++) g[i]=1.0/i/i;
for(int i=;i<=n;i++) f_[i]=f[n-i];
fft(f,g,a,b,a,len);
for(int i=;i<=n;i++) ans[i]=a[i].r;
fft(f_,g,a,b,a,len);
for(int i=;i<=n;i++) ans[i]-=a[n-i].r;
for(int i=;i<=n;i++) printf("%.3lf\n",ans[i]);
return ;
}
BZOJ_3527_[ZJOI2014]_力_(FFT+卷积)的更多相关文章
- 【BZOJ】3527: [Zjoi2014]力(fft+卷积)
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 好好的一道模板题,我自己被自己坑了好久.. 首先题目看错.......什么玩意.......首 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
- BZOJ_2194_快速傅立叶之二_(FFT+卷积)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=2194 给出序列\(a[0],a[1],...,a[n-1]\)和\(b[0],b[1],... ...
- 凡客副总裁被曝离职:或因IPO受阻|凡客|王春焕|离职_互联网_新浪科技_新浪网
凡客副总裁被曝离职:或因IPO受阻|凡客|王春焕|离职_互联网_新浪科技_新浪网 凡客副总裁被曝离职:或因IPO受阻 2013年05月07日 00:56 每日经济新闻 我有话说 每经 ...
- 凡客副总裁崔晓琦离职 曾负责旗下V+商城项目_科技_腾讯网
凡客副总裁崔晓琦离职 曾负责旗下V+商城项目_科技_腾讯网 凡客副总裁崔晓琦离职 曾负责旗下V+商城项目 腾讯科技[微博]乐天2013年09月18日12:44 分享 微博 空间 微信 新浪微博 邮箱 ...
- Oracle学习总结_day03_day04_条件查询_排序_函数_子查询
本文为博主辛苦总结,希望自己以后返回来看的时候理解更深刻,也希望可以起到帮助初学者的作用. 转载请注明 出自 : luogg的博客园 谢谢配合! day03_条件查询_排序_函数 清空回收站: PUR ...
- C Primer Plus_第6章_循环_编程练习
1.题略 #include int main(void) { int i; char ch[26]; for (i = 97; i <= (97+25); i++) { ch[i-97] = i ...
- 转:HIBERNATE一些_方法_@注解_代码示例---写的非常好
HIBERNATE一些_方法_@注解_代码示例操作数据库7步骤 : 1 创建一个SessionFactory对象 2 创建Session对象 3 开启事务Transaction : hibernate ...
随机推荐
- 粵語/廣東話/Cantonese 資料/Material
一.粵語歌詞網 1.海闊天空(粵語) 歌詞 今天我 寒夜裡看雪飄過 gam1 tin1 ngo5 hon4 je6 leoi5 hon3 syut3 piu1 gwo3 懷著冷卻了的心窩漂遠方 waa ...
- OpenJudge 2795 金银岛
1.链接地址: http://bailian.openjudge.cn/practice/2795/ 2.题目: 总Time Limit: 3000ms Memory Limit: 65536kB D ...
- nodejs的调试
js的调试始终是一个比较麻烦也是比较困难的事情,从最原始的alert调试,到火狐的firebug工具,在到后来各个浏览器厂商的调试工具.调试工具的发展历程,也可以看出由JS构建的业务和技术逻辑越来越复 ...
- 阿里云 CentOS 安装JDK
初用阿里云,使用centOS linux64操作系统 . 自己上传jdk文件总是安装失败,原因估计是因为我的网络不好,导致文件损坏. 解决办法,直接在linux命令行模式下,到官网下载 jdk,命令如 ...
- 用Objective-C的foundation框架解决表达式求值问题
主要思想: 本程序分2个类 一个是ExpressionString类,主要用于存储表达式以及对它进行求值.以下是该类中的内容: (NSString *)expString//用于存储要计算的表达式: ...
- 每天一个linux命令(1):more命令
more命令,功能类似 cat ,cat命令是整个文件的内容从上到下显示在屏幕上. more会以一页一页的显示方便使用者逐页阅读,而最基本的指令就是按空白键(space)就往下一页显示,按 b 键就会 ...
- JQuery(三) Ajax相关
JQuery大大简化了Ajax通用操作,开发者只需要指定请求URL,回调函数即可. 三个主要方法: $().param(obj):将obj参数(对象或数组)转化成查询字符串. {name:" ...
- 使用.htaccess进行浏览器图片文件缓存
对于图片类网站,每次打开页面都要重新下载图片,慢不说,还非常浪费流量.这时就需要用到缓存,强制浏览器缓存图片文件 缓存文件,提问网站访问数度,减少流量消耗,现提供2中缓存代码 打开.htaccess文 ...
- LNMP1.2一键安装教程
系统需求: CentOS/RHEL/Fedora/Debian/Ubuntu/Raspbian Linux系统 需要2GB以上硬盘剩余空间 128M以上内存,Xen的需要有SWAP,OpenVZ的另外 ...
- 字符编码笔记:ASCII,Unicode和UTF-8【转载】
作者: 阮一峰 日期: 2007年10月28日 今天中午,我突然想搞清楚Unicode和UTF-8之间的关系,于是就开始在网上查资料. 结果,这个问题比我想象的复杂,从午饭后一直看到晚上9点,才算初步 ...