线性解码器(Linear Decoder)

前面第一章提到稀疏自编码器(http://www.cnblogs.com/bzjia-blog/p/SparseAutoencoder.html)的三层网络结构,我们要满足最后一层的输出:a(3)≈a(1)(即输入值x)的近似重建。考虑到在最后一层的a(3)=f(z(3)),这里f一般用sigmoid函数或tanh函数等非线性函数,而将输出界定在一个范围内(比如sigmoid函数使结果在[0,1]中)。这对于有些数据组,例如MNIST手写数字库中其输入输出范围符合极佳,但并不是所有的情况都满足这个条件。例如,若采用PCA白化,输入将不再限制于[0,1],虽可通过缩放数据来确保其符合特定范围内,但显然,这不是最好的方式。

因此,这里提到的Linear Decoder就是通过在最后一层用激励函数:a(3) = z(3)(也即f(z)=z)来实现。这里要注意到,只是在最后一层用这个激励函数,其他隐层的激励函数仍然是sigmoid函数或者tanh函数,我们仅在输出层中使用线性激励机制。

这样一来,在求梯度的时候,公式:

就应该改成:

这个是显然的,因为f'(z)=1。其他层的都不需要改变。

练习:

这里讲义给出了一个练习,基本跟稀疏自编码一样,只有几处需要稍微改动一下。

linearDecoderExercise.m

  1. %% CS294A/CS294W Linear Decoder Exercise
  2.  
  3. % Instructions
  4. % ------------
  5. %
  6. % This file contains code that helps you get started on the
  7. % linear decoder exericse. For this exercise, you will only need to modify
  8. % the code in sparseAutoencoderLinearCost.m. You will not need to modify
  9. % any code in this file.
  10.  
  11. %%======================================================================
  12. %% STEP : Initialization
  13. % Here we initialize some parameters used for the exercise.
  14.  
  15. imageChannels = ; % number of channels (rgb, so )
  16.  
  17. patchDim = ; % patch dimension
  18. numPatches = ; % number of patches
  19.  
  20. visibleSize = patchDim * patchDim * imageChannels; % number of input units
  21. outputSize = visibleSize; % number of output units
  22. hiddenSize = ; % number of hidden units
  23.  
  24. sparsityParam = 0.035; % desired average activation of the hidden units.
  25. lambda = 3e-; % weight decay parameter
  26. beta = ; % weight of sparsity penalty term
  27.  
  28. epsilon = 0.1; % epsilon for ZCA whitening
  29.  
  30. %%======================================================================
  31. %% STEP : Create and modify sparseAutoencoderLinearCost.m to use a linear decoder,
  32. % and check gradients
  33. % You should copy sparseAutoencoderCost.m from your earlier exercise
  34. % and rename it to sparseAutoencoderLinearCost.m.
  35. % Then you need to rename the function from sparseAutoencoderCost to
  36. % sparseAutoencoderLinearCost, and modify it so that the sparse autoencoder
  37. % uses a linear decoder instead. Once that is done, you should check
  38. % your gradients to verify that they are correct.
  39.  
  40. % NOTE: Modify sparseAutoencoderCost first!
  41.  
  42. % To speed up gradient checking, we will use a reduced network and some
  43. % dummy patches
  44.  
  45. debugHiddenSize = ;
  46. debugvisibleSize = ;
  47. patches = rand([ ]);
  48. theta = initializeParameters(debugHiddenSize, debugvisibleSize);
  49.  
  50. [cost, grad] = sparseAutoencoderLinearCost(theta, debugvisibleSize, debugHiddenSize, ...
  51. lambda, sparsityParam, beta, ...
  52. patches);
  53.  
  54. % Check gradients
  55. numGrad = computeNumericalGradient( @(x) sparseAutoencoderLinearCost(x, debugvisibleSize, debugHiddenSize, ...
  56. lambda, sparsityParam, beta, ...
  57. patches), theta);
  58.  
  59. % Use this to visually compare the gradients side by side
  60. disp([numGrad grad]);
  61.  
  62. diff = norm(numGrad-grad)/norm(numGrad+grad);
  63. % Should be small. In our implementation, these values are usually less than 1e-.
  64. disp(diff);
  65.  
  66. assert(diff < 1e-, 'Difference too large. Check your gradient computation again');
  67.  
  68. % NOTE: Once your gradients check out, you should run step again to
  69. % reinitialize the parameters
  70. %}
  71.  
  72. %%======================================================================
  73. %% STEP : Learn features on small patches
  74. % In this step, you will use your sparse autoencoder (which now uses a
  75. % linear decoder) to learn features on small patches sampled from related
  76. % images.
  77.  
  78. %% STEP 2a: Load patches
  79. % In this step, we load 100k patches sampled from the STL10 dataset and
  80. % visualize them. Note that these patches have been scaled to [,]
  81.  
  82. load stlSampledPatches.mat
  83.  
  84. displayColorNetwork(patches(:, :));
  85.  
  86. %% STEP 2b: Apply preprocessing
  87. % In this sub-step, we preprocess the sampled patches, in particular,
  88. % ZCA whitening them.
  89. %
  90. % In a later exercise on convolution and pooling, you will need to replicate
  91. % exactly the preprocessing steps you apply to these patches before
  92. % using the autoencoder to learn features on them. Hence, we will save the
  93. % ZCA whitening and mean image matrices together with the learned features
  94. % later on.
  95.  
  96. % Subtract mean patch (hence zeroing the mean of the patches)
  97. meanPatch = mean(patches, );
  98. patches = bsxfun(@minus, patches, meanPatch);
  99.  
  100. % Apply ZCA whitening
  101. sigma = patches * patches' / numPatches;
  102. [u, s, v] = svd(sigma);
  103. ZCAWhite = u * diag( ./ sqrt(diag(s) + epsilon)) * u';
  104. patches = ZCAWhite * patches;
  105.  
  106. displayColorNetwork(patches(:, :));
  107.  
  108. %% STEP 2c: Learn features
  109. % You will now use your sparse autoencoder (with linear decoder) to learn
  110. % features on the preprocessed patches. This should take around minutes.
  111.  
  112. theta = initializeParameters(hiddenSize, visibleSize);
  113.  
  114. % Use minFunc to minimize the function
  115. addpath minFunc/
  116.  
  117. options = struct;
  118. options.Method = 'lbfgs';
  119. options.maxIter = ;
  120. options.display = 'on';
  121.  
  122. [optTheta, cost] = minFunc( @(p) sparseAutoencoderLinearCost(p, ...
  123. visibleSize, hiddenSize, ...
  124. lambda, sparsityParam, ...
  125. beta, patches), ...
  126. theta, options);
  127.  
  128. % Save the learned features and the preprocessing matrices for use in
  129. % the later exercise on convolution and pooling
  130. fprintf('Saving learned features and preprocessing matrices...\n');
  131. save('STL10Features.mat', 'optTheta', 'ZCAWhite', 'meanPatch');
  132. fprintf('Saved\n');
  133.  
  134. %% STEP 2d: Visualize learned features
  135.  
  136. W = reshape(optTheta(:visibleSize * hiddenSize), hiddenSize, visibleSize);
  137. b = optTheta(*hiddenSize*visibleSize+:*hiddenSize*visibleSize+hiddenSize);
  138. displayColorNetwork( (W*ZCAWhite)');

 sparseAutoencoderLinearCost.m

  1. function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...
  2. lambda, sparsityParam, beta, data)
  3. % -------------------- YOUR CODE HERE --------------------
  4. % Instructions:
  5. % Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your
  6. % earlier exercise onto this file, renaming the function to
  7. % sparseAutoencoderLinearCost, and changing the autoencoder to use a
  8. % linear decoder.
  9.  
  10. % visibleSize: the number of input units (probably 64)
  11. % hiddenSize: the number of hidden units (probably 25)
  12. % lambda: weight decay parameter
  13. % sparsityParam: The desired average activation for the hidden units (denoted in the lecture
  14. % notes by the greek alphabet rho, which looks like a lower-case "p").
  15. % beta: weight of sparsity penalty term
  16. % data: Our 64x10000 matrix containing the training data. So, data(:,i) is the i-th training example.
  17.  
  18. % The input theta is a vector (because minFunc expects the parameters to be a vector).
  19. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
  20. % follows the notation convention of the lecture notes.
  21.  
  22. %将长向量转换成每一层的权值矩阵和偏置向量值
  23. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
  24. W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
  25. b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
  26. b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
  27.  
  28. % Cost and gradient variables (your code needs to compute these values).
  29. % Here, we initialize them to zeros.
  30. cost = 0;
  31. W1grad = zeros(size(W1));
  32. W2grad = zeros(size(W2));
  33. b1grad = zeros(size(b1));
  34. b2grad = zeros(size(b2));
  35.  
  36. %% ---------- YOUR CODE HERE --------------------------------------
  37.  
  38. Jcost = 0;%直接误差
  39. Jweight = 0;%权值惩罚
  40. Jsparse = 0;%稀疏性惩罚
  41. [n m] = size(data);%m为样本的个数,n为样本的特征数
  42.  
  43. %前向算法计算各神经网络节点的线性组合值和active
  44. z2 = W1*data+repmat(b1,1,m);%注意这里一定要将b1向量复制扩展成m列的矩阵
  45. a2 = sigmoid(z2);
  46. z3 = W2*a2+repmat(b2,1,m);
  47. a3 = z3; %线性解码器************
  48.  
  49. % 计算预测产生的误差
  50. Jcost = (0.5/m)*sum(sum((a3-data).^2));
  51.  
  52. %计算权值惩罚项
  53. Jweight = (1/2)*(sum(sum(W1.^2))+sum(sum(W2.^2)));
  54.  
  55. %计算稀释性规则项
  56. rho = (1/m).*sum(a2,2);%求出第一个隐含层的平均值向量
  57. Jsparse = sum(sparsityParam.*log(sparsityParam./rho)+ ...
  58. (1-sparsityParam).*log((1-sparsityParam)./(1-rho)));
  59.  
  60. %损失函数的总表达式
  61. cost = Jcost+lambda*Jweight+beta*Jsparse;
  62.  
  63. %反向算法求出每个节点的误差值
  64. d3 = -(data-a3); %线性解码器**************
  65. sterm = beta*(-sparsityParam./rho+(1-sparsityParam)./(1-rho));%因为加入了稀疏规则项,所以
  66. %计算偏导时需要引入该项
  67. d2 = (W2'*d3+repmat(sterm,1,m)).*sigmoidInv(z2);
  68.  
  69. %计算W1grad
  70. W1grad = W1grad+d2*data';
  71. W1grad = (1/m)*W1grad+lambda*W1;
  72.  
  73. %计算W2grad
  74. W2grad = W2grad+d3*a2';
  75. W2grad = (1/m).*W2grad+lambda*W2;
  76.  
  77. %计算b1grad
  78. b1grad = b1grad+sum(d2,2);
  79. b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来
  80.  
  81. %计算b2grad
  82. b2grad = b2grad+sum(d3,2);
  83. b2grad = (1/m)*b2grad;
  84.  
  85. %-------------------------------------------------------------------
  86. % After computing the cost and gradient, we will convert the gradients back
  87. % to a vector format (suitable for minFunc). Specifically, we will unroll
  88. % your gradient matrices into a vector.
  89.  
  90. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
  91.  
  92. end
  93.  
  94. %-------------------------------------------------------------------
  95. % Here's an implementation of the sigmoid function, which you may find useful
  96. % in your computation of the costs and the gradients. This inputs a (row or
  97. % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)).
  98.  
  99. function sigm = sigmoid(x)
  100.  
  101. sigm = 1 ./ (1 + exp(-x));
  102. end
  103.  
  104. %sigmoid函数的逆函数
  105. function sigmInv = sigmoidInv(x)
  106.  
  107. sigmInv = sigmoid(x).*(1-sigmoid(x));
  108. end

只是对稀疏自编码器的代码进行了两处稍微的改动。

结果:

学习到的特征也放在了STL10Features.mat里,将要在下一章的练习中用到。

PS:讲义地址:

http://deeplearning.stanford.edu/wiki/index.php/Linear_Decoders

http://deeplearning.stanford.edu/wiki/index.php/Exercise:Learning_color_features_with_Sparse_Autoencoders

Deep Learning 学习随记(六)Linear Decoder 线性解码的更多相关文章

  1. Deep Learning 学习随记(七)Convolution and Pooling --卷积和池化

    图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接 ...

  2. Deep Learning学习随记(一)稀疏自编码器

    最近开始看Deep Learning,随手记点,方便以后查看. 主要参考资料是Stanford 教授 Andrew Ng 的 Deep Learning 教程讲义:http://deeplearnin ...

  3. Deep Learning 学习随记(五)深度网络--续

    前面记到了深度网络这一章.当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行.不过最终还是调试成功了,sigh~ 前一篇 ...

  4. Deep Learning 学习随记(五)Deep network 深度网络

    这一个多周忙别的事去了,忙完了,接着看讲义~ 这章讲的是深度网络(Deep Network).前面讲了自学习网络,通过稀疏自编码和一个logistic回归或者softmax回归连接,显然是3层的.而这 ...

  5. Deep Learning 学习随记(四)自学习和非监督特征学习

    接着看讲义,接下来这章应该是Self-Taught Learning and Unsupervised Feature Learning. 含义: 从字面上不难理解其意思.这里的self-taught ...

  6. Deep Learning学习随记(二)Vectorized、PCA和Whitening

    接着上次的记,前面看了稀疏自编码.按照讲义,接下来是Vectorized, 翻译成向量化?暂且这么认为吧. Vectorized: 这节是老师教我们编程技巧了,这个向量化的意思说白了就是利用已经被优化 ...

  7. Deep Learning 学习随记(八)CNN(Convolutional neural network)理解

    前面Andrew Ng的讲义基本看完了.Andrew讲的真是通俗易懂,只是不过瘾啊,讲的太少了.趁着看完那章convolution and pooling, 自己又去翻了翻CNN的相关东西. 当时看讲 ...

  8. Deep Learning 学习随记(三)Softmax regression

    讲义中的第四章,讲的是Softmax 回归.softmax回归是logistic回归的泛化版,先来回顾下logistic回归. logistic回归: 训练集为{(x(1),y(1)),...,(x( ...

  9. Deep Learning 学习随记(三)续 Softmax regression练习

    上一篇讲的Softmax regression,当时时间不够,没把练习做完.这几天学车有点累,又特别想动动手自己写写matlab代码 所以等到了现在,这篇文章就当做上一篇的续吧. 回顾: 上一篇最后给 ...

随机推荐

  1. Android 中LocalBroadcastManager的使用方式

    Android 中LocalBroadcastManager的使用方式 在android-support-v4.jar中引入了LocalBroadcastManager,称为局部通知管理器,这种通知的 ...

  2. char类型关联

    SQL> create table a1(id int,name char(10)); Table created. SQL> create table a2(id int,name ch ...

  3. jquery-pager分页

    首先引用这三个文件 <script src="../../Scripts/jquery-1.4.4.min.js" type="text/javascript&qu ...

  4. Wall - POJ 1113(求凸包)

    题目大意:给N个点,然后要修建一个围墙把所有的点都包裹起来,但是要求围墙距离所有的点的最小距离是L,求出来围墙的长度. 分析:如果没有最小距离这个条件那么很容易看出来是一个凸包,然后在加上一个最小距离 ...

  5. 内存数据库MemSQL ——基于内存,MVCC+哈希表、跳表

    本周数据库业界探讨最火热的话题就是MemSQL,究竟是不是"旧瓶装新酒"引发了诸多的辩论,同时也引发了究竟是产品技术重要还是DBA重要的疑问.网络中有一些关于MemSQL的介绍,基 ...

  6. kafka集群扩容以及数据迁移

    一 kafka集群扩容比较简单,机器配置一样的前提下只需要把配置文件里的brokerid改一个新的启动起来就可以.比较需要注意的是如果公司内网dns更改的不是很及时的话,需要给原有的旧机器加上新服务器 ...

  7. 【转】CPU调度

    转自:http://blog.csdn.net/xiazdong/article/details/6280345 CPU调度   用于多道程序 以下先讨论对于单CPU的调度问题. 回顾多道程序,同时把 ...

  8. Hashtable映射数据库字段

    package com.test; import java.sql.*; import java.util.ArrayList; import java.util.Hashtable; import ...

  9. [IOS开发进阶与实战]第一天:CoreData的运行机制

    1.数据模型NSManagedObjectModel的建立 1.- (NSManagedObjectModel *)managedObjectModel { if (_managedObjectMod ...

  10. 小程序原理,生成SQL SERVER 2008 数据库所有表的结构文档

    作者:wide288 , 日期:2013-7-31 以前开发中,用 MYSQL 数据库,有个小程序 生成数据库结构文档.很方便,做为开发组的文档很有用. 现在开发中用到了 SQL SERVER 200 ...