Hadoop 2.6.3运行自带WordCount程序笔记
运行平台:Hadoop 2.6.3
模式:完全分布模式
1、准备统计文本,以一段文字为例:eg.txt
The Project Gutenberg EBook of War and Peace, by Leo Tolstoy This eBook is for the use of anyone anywhere at no cost and with almost
no restrictions whatsoever. You may copy it, give it away or re-use it
under the terms of the Project Gutenberg License included with this
eBook or online at www.gutenberg.org Title: War and Peace Author: Leo Tolstoy
2、在Shell中上传文本
hadoop fs -put ./eg.txt /
3、进入share/hadoop/mapreduce目录下,启动排序
hadoop jar hadoop-mapreduce-examples-2.6..jar wordcount /eg.txt /out
4、屏幕输出结果如下:
16/03/29 21:30:26 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
16/03/29 21:30:30 INFO input.FileInputFormat: Total input paths to process : 1
16/03/29 21:30:30 INFO mapreduce.JobSubmitter: number of splits:1
16/03/29 21:30:31 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1459233715960_0004
16/03/29 21:30:31 INFO impl.YarnClientImpl: Submitted application application_1459233715960_0004
16/03/29 21:30:31 INFO mapreduce.Job: The url to track the job: http://m1.fredlab.org:8088/proxy/application_1459233715960_0004/
16/03/29 21:30:31 INFO mapreduce.Job: Running job: job_1459233715960_0004
16/03/29 21:30:47 INFO mapreduce.Job: Job job_1459233715960_0004 running in uber mode : false
16/03/29 21:30:47 INFO mapreduce.Job: map 0% reduce 0%
16/03/29 21:30:57 INFO mapreduce.Job: map 100% reduce 0%
16/03/29 21:31:09 INFO mapreduce.Job: map 100% reduce 100%
16/03/29 21:31:10 INFO mapreduce.Job: Job job_1459233715960_0004 completed successfully
16/03/29 21:31:11 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=547
FILE: Number of bytes written=213761
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=453
HDFS: Number of bytes written=361
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=7594
Total time spent by all reduces in occupied slots (ms)=9087
Total time spent by all map tasks (ms)=7594
Total time spent by all reduce tasks (ms)=9087
Total vcore-milliseconds taken by all map tasks=7594
Total vcore-milliseconds taken by all reduce tasks=9087
Total megabyte-milliseconds taken by all map tasks=7776256
Total megabyte-milliseconds taken by all reduce tasks=9305088
Map-Reduce Framework
Map input records=11
Map output records=62
Map output bytes=598
Map output materialized bytes=547
Input split bytes=98
Combine input records=62
Combine output records=45
Reduce input groups=45
Reduce shuffle bytes=547
Reduce input records=45
Reduce output records=45
Spilled Records=90
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=310
CPU time spent (ms)=2010
Physical memory (bytes) snapshot=273182720
Virtual memory (bytes) snapshot=4122341376
Total committed heap usage (bytes)=137498624
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=355
File Output Format Counters
Bytes Written=361
5、结果文件位于hadoop集群/out目录下,如果执行成功,则出现_SUCCESS标识文件,并将结果存放于part-r-00000文件中。
Author: 1
EBook 1
Gutenberg 2
Leo 2
License 1
Peace 1
Peace, 1
Project 2
The 1
This 1
Title: 1
Tolstoy 2
War 2
You 1
almost 1
and 3
anyone 1
anywhere 1
at 2
away 1
by 1
copy 1
cost 1
eBook 2
for 1
give 1
included 1
is 1
it 2
it, 1
may 1
no 2
of 3
online 1
or 2
re-use 1
restrictions 1
terms 1
the 3
this 1
under 1
use 1
whatsoever. 1
with 2
www.gutenberg.org 1
可以到http://www.gutenberg.org/上下载更多txt版书籍文本来练习。
Hadoop 2.6.3运行自带WordCount程序笔记的更多相关文章
- hadoop2.2使用手册2:如何运行自带wordcount
问题导读:1.hadoop2.x自带wordcount在什么位置?2.运行wordcount程序,需要做哪些准备? 此篇是在hadoop2完全分布式最新高可靠安装文档 hadoop2.X使用手册1:通 ...
- 大数据之路week07--day03(Hadoop深入理解,JAVA代码编写WordCount程序,以及扩展升级)
什么是MapReduce 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃. MapReduce方法则是: 1.给在座的所有玩家中分配这摞牌 2.让每个玩家数自己手中的牌有几 ...
- hadoop:如何运行自带wordcount
1.在linux系统创建文件 vi aa.txt --------i 进行编辑 输入 内容(多个单词例如:aa bb cc aa) 2.在HDFS上面创建文件夹 hdfs dfs -mkdir ...
- MapReduce编程入门实例之WordCount:分别在Eclipse和Hadoop集群上运行
上一篇博文如何在Eclipse下搭建Hadoop开发环境,今天给大家介绍一下如何分别分别在Eclipse和Hadoop集群上运行我们的MapReduce程序! 1. 在Eclipse环境下运行MapR ...
- Hadoop下WordCount程序
一.前言 在之前我们已经在 CenOS6.5 下搭建好了 Hadoop2.x 的开发环境.既然环境已经搭建好了,那么现在我们就应该来干点正事嘛!比如来一个Hadoop世界的HelloWorld,也就是 ...
- Hadoop入门 完全分布式运行模式-集群配置
目录 集群配置 集群部署规划 配置文件说明 配置集群 群起集群 1 配置workers 2 启动集群 总结 3 集群基本测试 上传文件到集群 查看数据真实存储路径 下载 执行wordcount程序 配 ...
- spark wordcount程序
spark wordcount程序 IllegalAccessError错误 这个错误是权限错误,错误的引用方法,比如方法中调用private,protect方法. 当然大家知道wordcount业务 ...
- Hadoop_05_运行 Hadoop 自带 MapReduce程序
1. MapReduce使用 MapReduce是Hadoop中的分布式运算编程框架,只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现 一个强大的海量数据并发处理程序 2. 运行Hadoop自 ...
- 020_自己编写的wordcount程序在hadoop上面运行,不使用插件hadoop-eclipse-plugin-1.2.1.jar
1.Eclipse中无插件运行MP程序 1)在Eclipse中编写MapReduce程序 2)打包成jar包 3)使用FTP工具,上传jar到hadoop 集群环境 4)运行 2.具体步骤 说明:该程 ...
随机推荐
- Cxf + Spring3.0 入门开发WebService
转自原文地址:http://sunny.blog.51cto.com/182601/625540/ 由于公司业务需求, 需要使用WebService技术对外提供服务,以前没有做过类似的项目,在网上搜寻 ...
- Gdi+实用入门
大部分是参照其它资料,然后加以自己的理解,那是什么,总结.算不得什么教程.......汗,自己看着就行了..如果别人能看那就更好了. 首先下载GDI+文件包,一个动态链接库,使用GDI+就是调用那个动 ...
- JS 日期操作类
/* 日期对象格式化为指定日期格式 */Date.prototype.format = function (format) { var o = { "M+": this.getMo ...
- bzoj2285
完全是为了拼凑才出出来的吧先分数规划求出到基地入口的最小安全系数然后再最小点权覆盖集,只不过这里是带一定精度实数的流,其实是一样的 ; eps=0.001; type way=record po,ne ...
- bzoj1758
好题显然是分数规划,二分答案之后我们要找是否存在一条边数在[l,u]长度和为正的路径可以用树的分治来解决这个问题我们假设当前处理的是过点root的路径显然我们不好像之前男人八题里先算出所有答案,然后再 ...
- CG&Game资源(转)
cg教程下载: http://cgpeers.com http://cgpersia.com http://bbs.ideasr.com/forum-328-1.html http://bbs.ide ...
- ACM2037
这题采用的是贪心算法,暂不会.
- [zz] makefile中=和:=的区别
转载自:http://www.cnblogs.com/wanqieddy/archive/2011/09/21/2184257.html 在Makefile中我们经常看到 = := ?= +=这几个赋 ...
- 神经网络中误差反向传播(back propagation)算法的工作原理
注意:版权所有,转载需注明出处. 神经网络,从大学时候就知道,后面上课的时候老师也讲过,但是感觉从来没有真正掌握,总是似是而非,比较模糊,好像懂,其实并不懂. 在开始推导之前,需要先做一些准备工作,推 ...
- 选择服务器OS标准
稳定性.可靠性.兼容性.高效率.可持续,五大标准; recommend always using the stable version for production environments http ...