转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码)


最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm for Computing Longest Common Subsequence"中,给出了O(nlogn)下限的一种算法。

定理:设序列A长度为n,{A(i)},序列B长度为m,{B(i)},考虑A中所有元素在B中的序号,即A某元素在B的序号为{Pk1,Pk2,..},将这些序号按照降序排列,然后按照A中的顺序得到一个新序列,此新序列的最长严格递增子序列即对应为A、B的最长公共子序列。

举例来说,A={a,b,c,d,b},B={b,c,a,b},则a对应在B的序号为2,b对应序号为{3,0},c对应序号为1,d对应为空集,生成的新序列为{2, 3, 0, 1, 3, 0},其最长严格递增子序列为{0,1,3},对应的公共子序列为{b, c, b}

原论文的证明过程较复杂,其实可以简单的通过一一对应来证明。即证明A、B的一个公共子序列和新序列的一个严格递增子序列一一对应。

(1) A、B的一个公共子序列对应新序列的一个严格递增子序列

假设A、B的某一个公共子序列长度为k,则其公共子序列在A和B中可以写为

{Ai1,Ai2, ..., Aik}

{Bj1,Bj2, ..., Bjk}

如此有Ai1 = Aj1,Ai2 = Aj2, ...., Aik = Ajk, 考虑元素Bj1在B中的序号P(Bj1),则有

P(Bj1)< P(Bj2) < ... < P(Bjk)

注意此严格递增子序列属于新序列的一个子序列,因此得证

(2) 新序列的一个严格递增子序列对应A、B的一个公共子序列

设新序列的一个严格递增子序列{P1,P2, ..., Pk},任意两个相同的P不可能属于A中同一个元素,因为A中某元素在B中的序号按照降序排列,但此序列为严格递增序列,矛盾。所以每个P均对应于A中不同位置的元素,设为{Ai1, Ai2, ..., Aik}。

因为P是严格递增序列,则每个P也对应B中唯一的一个元素,假设为{Bj1,Bj2, ..., Bjk},由P的定义可知Ai1= Bj1, Ai2 = Bj2, ...., Aik = Bjk,因此得证。

实现上比较复杂,有以下几个步骤:

(1) 对序列B排序

(2) 计算A中每个元素在B中的序号,并构成新序列

(3) 使用LIS的方法计算最长严格递增子序列

(4) 获取最长公共子序列

性能分析:

(1) 排序复杂度为nlogn

(2) 获取一个元素在B中的序号的复杂度,最小为logn,最大为n,获取所有元素的复杂度为 nlogn === n*n

(3) LIS 复杂度为nlogn

因此总体复杂度在nlogn 到 n*n logn之间,但如果(2)
步骤中A中元素在B中的序号对数很少时,性能相当优越,在实际测试时,string
中均为小写字母,长度为10000的情况下,这种方法比普通的LCS快一倍以上;如果string
中的字符扩展成char,即0-255,则这种方法比普通的LCS快至少一个数量级。


以下是参考代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<vector>
#include<queue>
#include<string>
#include<sstream>
#define eps 1e-9
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define FOR(i,j,k) for(int i=j;i<=k;i++)
#define MAXN 1005
#define MAXM 40005
#define INF 0x3fffffff
using namespace std;
typedef long long LL; struct node
{
char c;
int num;
} u[]; int i,j,k,n,m,x,y,T,ans,big,cas,num,len;
bool flag; bool cmp(node a,node b)
{
if (a.c==b.c) return a.num>b.num;
return a.c<b.c;
} vector <int> p;
char a[],b[],c[];
int lena,lenb,dp[]; int main()
{
scanf("%s",a);//读入a串
scanf("%s",b);//读入b串 lena=strlen(a);
lenb=strlen(b); for (i=;i<lenb;i++)
{
u[i].c=b[i];
u[i].num=i;
} sort(u,u+lenb,cmp);//对b串排序 for (i=;i<lenb;i++)//排序后存入字符串c中,便于使用lower_bound
{
c[i]=u[i].c;
}
c[lenb]='\0'; for (i=;i<lena;i++)//计算A中每个元素在B中的序号
{
k=lower_bound(c,c+lenb,a[i])-c;
while (k<lenb && a[i]==c[k])
{
p.push_back(u[k].num);
k++;
}
} n=p.size(); memset(dp,,sizeof(dp));//计算最长上升子序列
num=;
for (i=;i<n;i++)
{
if (p[i]>dp[num])
{
dp[++num]=p[i]; }else
{
k=lower_bound(dp+,dp++num,p[i])-dp;
dp[k]=p[i]; }
} printf("%d\n",num); return ;
}

【算法】最长公共子序列(nlogn)的更多相关文章

  1. 最长公共子序列 nlogn

    先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...

  2. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  3. 动态规划算法——最长公共子序列问题(java实现)

    已知序列X=(A,B,C,A,B,D,A)和序列Y=(B,A,D,B,A),求它们的最长公共子序列S. /* * LCSLength.java * Version 1.0.0 * Created on ...

  4. 经典算法-最长公共子序列(LCS)与最长公共子串(DP)

    public static int lcs(String str1, String str2) { int len1 = str1.length(); int len2 = str2.length() ...

  5. 动态规划经典算法--最长公共子序列 LCS

    转移方程 代码: //法一: #include <bits/stdc++.h> using namespace std; //---------------https://lunatic. ...

  6. LCS问题(最长公共子序列)-动态规划实现

    问题描述: 问题] 求两字符序列的最长公共字符子序列 注意: 并不要求子串(字符串一)的字符必须连续出现在字符串二中. 思路分析: 最优子结构和重叠子问题的性质都具有,所以要采取动态规划的算法 最长公 ...

  7. 最长公共子序列&最长公共子串

    首先区别最长公共子串和最长公共子序列  LCS(计算机科学算法:最长公共子序列)_百度百科 最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. 最长公共子序列: http ...

  8. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  9. P3402 最长公共子序列(nlogn)

    P3402 最长公共子序列 题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子 ...

随机推荐

  1. 利用python建表

    (ENV)carlo@ubuntu:~/flasky$ python hello.py shell >>> from hello import db>>> db.d ...

  2. iptables的设置

    一.filter表防火墙(过滤器) iptables -A ( INPUT OUTPUT ) -s 192.1680.1.200 -p ( TCP UDP ICMP ) -i ( eth0 eth1 ...

  3. bzoj1127: [POI2008]KUP

    Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...

  4. iOS9 以上的真机调试 不用证书

    具体流程如下: 首次使用AppleID  的注意事项:  要在设置中 进行 如下操作  设置--通用--描述文件   ---添加信任 但是有时候  还是 会不能调试,  显示信息  是这样的   : ...

  5. 符合搜索引擎SEO规则的HTML代码

    实话说,部落在有时候,也经常会修改一下自己的主题,当然,很多时候,对自己修改过后的主题,会通过查看源代码的方式,来查看自己HTML代码,很多时候,也没有去刻意对代码进行符合搜索引擎SEO规则的优化,而 ...

  6. [BZOJ 3236] [Ahoi2013] 作业 && [BZOJ 3809] 【莫队(+分块)】

    题目链接: BZOJ - 3236   BZOJ - 3809 算法一:莫队 首先,单纯的莫队算法是很好想的,就是用普通的第一关键字为 l 所在块,第二关键字为 r 的莫队. 这样每次端点移动添加或删 ...

  7. 网络流(最大密集度子图,分数规划):UvaLive 3709 Hard Life

    John is a Chief Executive Officer at a privately owned medium size company. The owner of the company ...

  8. datagridview,textbox,combobox的数据绑定,数据赋值,picturebox的用法

    一:datagridview数据绑定 二:textbox的数据绑定(datetimepicker) 总结: 最好还是写成双向绑定那种,不要再写出发事件了,只要在给textbox赋值就能重新绑定了,不然 ...

  9. select的使用(一)

    单表操作 select Name,Major,InDate from T_Employee as 计算结果 select Name as 姓名,Major,InDate from T_Employee ...

  10. POJ2286 The Rotation Game(IDA*)

    The Rotation Game Time Limit: 15000MS   Memory Limit: 150000K Total Submissions: 5691   Accepted: 19 ...