给定n个命题之间的已经证明的关系如 a b表示已经证明蕴含式a→b,要求还需要再作多少次证明使得所有的命题都是等价的.将每个命题看成一个点,已经证明的命题之间连一条边,问题转化为添加多少条单向边使得图成为一个强连通分量.

先求出所有的强连通分量,然后缩点构成一个SCC图,统计其中入度为0的点个数a,以及出度为0的点的个数b,max(a,b)就是需要再作的证明.注意当图一开始就是强连通时,不需要作出证明了.

来自刘汝佳算法训练指南代码:

#include <iostream>
#include <sstream>
#include <cstdio>
#include <climits>
#include <cstring>
#include <cstdlib>
#include <string>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#define esp 1e-6
#define pi acos(-1.0)
#define pb push_back
#define mp(a, b) make_pair((a), (b))
#define in freopen("in.txt", "r", stdin);
#define out freopen("out.txt", "w", stdout);
#define print(a) printf("%d\n",(a));
#define bug puts("********))))))");
#define stop system("pause");
#define Rep(i, c) for(__typeof(c.end()) i = c.begin(); i != c.end(); i++)
#define pragma comment(linker, "/STACK:102400000, 102400000")
#define inf 0x0f0f0f0f using namespace std;
typedef long long LL;
typedef vector<int> VI;
typedef pair<int, int> pii;
typedef vector<pii,int> VII;
typedef vector<int>:: iterator IT;
const int maxn = 22222;
int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
int in0[maxn], out0[maxn];
VI g[maxn];
stack<int> S;
void dfs(int u)
{
S.push(u);
lowlink[u] = pre[u] = ++dfs_clock;
for(int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v])
{
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
void find_scc(int n)
{
memset(pre, 0, sizeof(pre));
memset(sccno, 0, sizeof(sccno));
dfs_clock = scc_cnt = 0;
for(int i = 0; i < n; i++)
if(!pre[i]) dfs(i);
}
int main(void)
{in
int n, m;
int T;
for(int t = scanf("%d", &T); t <= T; t++)
{
for(int i = 0; i < maxn; i++)
g[i].clear();
memset(in0, 1, sizeof(in0));
memset(out0, 1, sizeof(out0));
scanf("%d%d", &n, &m);
while(m--)
{
int u, v;
scanf("%d%d", &u, &v);
u--, v--;
g[u].pb(v);
}
find_scc(n);
for(int u = 0; u < n; u++)
for(int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if(sccno[v] != sccno[u])
in0[sccno[v]] = out0[sccno[u]] = 0;
}
int a = 0, b= 0;
for(int i = 1; i <= scc_cnt; i++)
{
if(in0[i]) a++;
if(out0[i]) b++;
}
int ans = 0;
if(scc_cnt != 1) ans = max(a, b);
printf("%d\n",ans);
}
return 0;
}

UVALive - 4287 Proving Equivalences的更多相关文章

  1. UVALive - 4287 - Proving Equivalences(强连通分量)

    Problem   UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...

  2. UVALive 4287 Proving Equivalences(缩点)

    等价性问题,给出的样例为 a->b的形式,问要实现全部等价(即任意两个可以互相推出),至少要加多少个形如 a->b的条件. 容易想到用强连通缩点,把已经实现等价的子图缩掉,最后剩余DAG. ...

  3. UvaLive 4287 Proving Equivalences 强连通缩点

    原题链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  4. UVALIVE 4287 Proving Equivalences (强连通分量+缩点)

    题意:给定一个图,问至少加入多少条边能够使这个图强连通. 思路:首先求出这个图的强连通分量.然后把每个强连通分量缩成一个点.那么这个图变成了一个DAG,求出全部点的入度和出度,由于强连通图中每个节点的 ...

  5. UVALive 4287 Proving Equivalence (强连通分量)

    把证明的关系看出一张图,最终就是要所有的点都在至少一个环中.环的判断和度数有关. 用tarjan找强连通分量,在一个强连通分量点已经等价缩点以后形成一个DAG,计算入度为0的点数a, 出度为0的b,取 ...

  6. 训练指南 UVALive - 4287 (强连通分量+缩点)

    layout: post title: 训练指南 UVALive - 4287 (强连通分量+缩点) author: "luowentaoaa" catalog: true mat ...

  7. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  8. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. Proving Equivalences(加多少边使其强联通)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. media type和media query

    media type media type是CSS2的重要属性,通过它,可以针对不同的设备指定不同的样式.   media type种类:   用法: <link href="styl ...

  2. Orchard 学习-安装Orchard

    前段时间使用一个ABP的框架进行了一个简单CMS开发.但感觉自己开发CMS不够灵活和通用,所以还是学习一下Orchard.学习的第一步,阅读官方的文档.由于是英文,所以我对其进行了翻译和记录,方便自己 ...

  3. 第二章 jQuery选择器

    选择器是行为与文档内容之间的纽带,其目的是能轻松的找到文档中的元素. jQuery中的选择器继承了CSS的风格.利用jQuery选择器,可以非常便捷快速地找出特定的DOM元素,然后给它们添加相应的行为 ...

  4. ACM——搜索(一)

    南邮OJ——1108 搜索(一) 时间限制(普通/Java):3500MS/10500MS          运行内存限制:65536KByte总提交:1023            测试通过:367 ...

  5. sql server 2008 r2 清除数据库日志

    USE [master] GO ALTER DATABASE [数据库名] SET RECOVERY SIMPLE WITH NO_WAIT GO ALTER DATABASE [数据库名] SET ...

  6. MVC构架思想

    一.构架的基本思想 采用MVC构架一个网站时,最好随时随地地将脑袋中切割成三份(M,V,C),这是一个最基本的切割单位,而且也是最容易切割的三个部分,但是在实务上,通常不会这么简单,有时候我们会再多切 ...

  7. wifidog编译到openwrt

    首先敲一下 cd 命令,定位到自己的用户目录, 然后 mkdir openwrt 新建一个openwrt文件夹,然后开始装openwrt的编译用到的工具, sudo apt-get install g ...

  8. C#基础(四)——ref与out的区别

    1.ref传进去的参数必须进行初始化,out不必int i;SomeMethod( ref i );//语法错误SomeMethod( out i );//通过 2.ref传进去的参数在函数内部可以直 ...

  9. SQL获取数据库中表的列名和列类型

    select column_name as [字段名],data_type as [数据类型] from information_schema.columns where table_name='表名 ...

  10. GroupBox 重绘圆角边框和文字

    private void GroupBox_Paint(object sender, PaintEventArgs e) { if (sender != null && sender ...