题目链接:BZOJ - 1009

题目分析

题目要求求出不包含给定字符串的长度为 n 的字符串的数量。

既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j 位的字符串个数,然后转移就是可以从第 j 位加上一个字符转移到另一个位置。

然而..我并没有写过KMP + DP,我觉得还是写AC自动机+DP比较简单..于是,尽管只有一个模式串,我还是写了AC自动机+DP。

然后就是建出AC自动机,f[i][j] 表示长度为 i ,走到节点 j 的字符串的个数。然后 f[i][] 是由 f[i - 1][] 转移过来的。

这个 DP 的转移满足 f[i][j] = sigma(f[i - 1][k] * A[k][j]) ,所以可以用矩阵乘法优化。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ctime> using namespace std; const int MaxL = 20 + 5; int n, m, Mod, Ans, Root, Zero;
int Child[MaxL][11], Fail[MaxL]; char S[MaxL]; struct Matrix
{
int Num[MaxL][MaxL];
} M; Matrix operator * (Matrix A, Matrix B)
{
Matrix ret;
memset(ret.Num, 0, sizeof(ret.Num));
for (int i = 0; i < m; ++i)
for (int j = 0; j < m; ++j)
{
if (A.Num[i][j] == 0) continue;
for (int k = 0; k < m; ++k)
{
ret.Num[i][k] += A.Num[i][j] * B.Num[j][k];
ret.Num[i][k] %= Mod;
}
}
return ret;
} Matrix Pow(Matrix a, int b)
{
Matrix ret, f;
memset(ret.Num, 0, sizeof(ret.Num));
for (int i = 0; i < m; ++i) ret.Num[i][i] = 1;
f = a;
while (b)
{
if (b & 1) ret = ret * f;
b >>= 1;
f = f * f;
}
return ret;
} void Prepare()
{
Root = 0;
for (int i = 0; i < m; ++i)
Child[i][S[i + 1] - '0'] = i + 1;
Zero = m + 1;
Fail[Root] = Zero;
for (int i = 0; i <= 9; ++i)
Child[Zero][i] = Root;
for (int i = 0; i < m; ++i)
for (int j = 0; j <= 9; ++j)
if (S[i + 1] - '0' == j) Fail[Child[i][j]] = Child[Fail[i]][j];
else Child[i][j] = Child[Fail[i]][j];
for (int i = 0; i < m; ++i)
for (int j = 0; j <= 9; ++j)
if (Child[i][j] != m)
++M.Num[i][Child[i][j]];
} int main()
{
scanf("%d%d%d", &n, &m, &Mod);
scanf("%s", S + 1);
Prepare();
M = Pow(M, n);
Ans = 0;
for (int i = 0; i < m; ++i)
Ans = (Ans + M.Num[0][i]) % Mod;
printf("%d\n", Ans);
return 0;
}

  

[BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】的更多相关文章

  1. BZOJ 1009 GT考试 (AC自动机 + 矩阵乘法加速dp)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 准考证号为\(n\)位数\(X_1X_2....X_n(0<=X_ ...

  2. BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

    标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...

  3. P3193 [HNOI2008]GT考试(KMP+矩阵乘法加速dp)

    P3193 [HNOI2008]GT考试 思路: 设\(dp(i,j)\)为\(N\)位数从高到低第\(i\)位时,不吉利数字在第\(j\)位时的情况总数,那么转移方程就为: \[dp(i,j)=dp ...

  4. bzoj1009: [HNOI2008]GT考试 ac自动机+矩阵快速幂

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9 ...

  5. bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...

  6. 【bzoj1444】[Jsoi2009]有趣的游戏 AC自动机+矩阵乘法

    题目描述 输入 注意 是0<=P 输出 样例输入 样例输出 题解 AC自动机+矩阵乘法 先将所有字符串放到AC自动机中,求出Trie图. 然后构建邻接矩阵:如果x不是某个字符串的末位置,则x连向 ...

  7. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  8. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  9. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

随机推荐

  1. Spring MVC 3.0.5+Spring 3.0.5+MyBatis3.0.4全注解实例详解(二)

    在上一篇文章中我详细的介绍了如何搭建maven环境以及生成一个maven骨架的web项目,那么这章中我将讲述Spring MVC的流程结构,Spring MVC与Struts2的区别,以及例子中的一些 ...

  2. 利用java开发一个双击执行的小程序

    之前我们利用java写了很多东西,但是好像都没有什么实际意义. 因为有意义桌面小程序怎么都得有个界面,可是界面又不太好搞.或者 了解到这一层的人就少之又少了. 呀,是不是还得开辟一些版面来介绍awt和 ...

  3. Python开发笔记之正则表达式的使用

    查找正则表达式 import re re_txt = re.compile(r'(\d)*.txt') m = re_txt.search(src) if not m == None: m.group ...

  4. 查询制定行数的数据(2)对了,mysql不能用top关键字

    采用嵌套查询的方式,倒序之后前10条 倒序之后前9条 采用嵌套查询的方式,倒序之后前10条 排正序之后从第一条开始弄十条数据 排正序之后从第一条开始弄九条数据 排正序之后从第十条开始弄十条数据 排正序 ...

  5. 解读Spring Ioc容器设计图

    在Spring Ioc容器的设计中,有俩个主要的容器系列:一个是实现BeanFactory接口的简单容器系列,这系列容器只实现了容器最基本的功能:另外一个是ApplicationContext应用上下 ...

  6. Solr配置与简单Demo

    简介: solr是基于Lucene Java搜索库的企业级全文搜索引擎,目前是apache的一个项目.它的官方网址在http://lucene.apache.org/solr/  .solr需要运行在 ...

  7. Solr 1.3 安装步骤

    可以通过以下三种方式之一设置   Solr   的主位置: 1.设置   java   系统属性   solr.solr.home   (没错,就是  solr.solr.home).    2.配置 ...

  8. pop动画大全 只能时代程序员更应该关心效果而不是冷冰冰的代码

    下载地址 https://pan.baidu.com/s/1o8pQWau

  9. Runtime运行时学习(一)

    其实Runtime已经开源: 下载objc4-437.1.tar.gz来看看源码: 参考: http://blog.cocoabit.com/2014-10-06-yi-li-jie-objctive ...

  10. iOS afnetworking最新版报错 没有AFHTTPRequestOperationManager类了

    今天开了一个小项目   用的是pod   然后  安装好 Afnetworking之后   发现 AFHTTPRequestOperationManager  这个类没有了  ,百度之后  发现 原来 ...