题目链接:BZOJ - 1009

题目分析

题目要求求出不包含给定字符串的长度为 n 的字符串的数量。

既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j 位的字符串个数,然后转移就是可以从第 j 位加上一个字符转移到另一个位置。

然而..我并没有写过KMP + DP,我觉得还是写AC自动机+DP比较简单..于是,尽管只有一个模式串,我还是写了AC自动机+DP。

然后就是建出AC自动机,f[i][j] 表示长度为 i ,走到节点 j 的字符串的个数。然后 f[i][] 是由 f[i - 1][] 转移过来的。

这个 DP 的转移满足 f[i][j] = sigma(f[i - 1][k] * A[k][j]) ,所以可以用矩阵乘法优化。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ctime> using namespace std; const int MaxL = 20 + 5; int n, m, Mod, Ans, Root, Zero;
int Child[MaxL][11], Fail[MaxL]; char S[MaxL]; struct Matrix
{
int Num[MaxL][MaxL];
} M; Matrix operator * (Matrix A, Matrix B)
{
Matrix ret;
memset(ret.Num, 0, sizeof(ret.Num));
for (int i = 0; i < m; ++i)
for (int j = 0; j < m; ++j)
{
if (A.Num[i][j] == 0) continue;
for (int k = 0; k < m; ++k)
{
ret.Num[i][k] += A.Num[i][j] * B.Num[j][k];
ret.Num[i][k] %= Mod;
}
}
return ret;
} Matrix Pow(Matrix a, int b)
{
Matrix ret, f;
memset(ret.Num, 0, sizeof(ret.Num));
for (int i = 0; i < m; ++i) ret.Num[i][i] = 1;
f = a;
while (b)
{
if (b & 1) ret = ret * f;
b >>= 1;
f = f * f;
}
return ret;
} void Prepare()
{
Root = 0;
for (int i = 0; i < m; ++i)
Child[i][S[i + 1] - '0'] = i + 1;
Zero = m + 1;
Fail[Root] = Zero;
for (int i = 0; i <= 9; ++i)
Child[Zero][i] = Root;
for (int i = 0; i < m; ++i)
for (int j = 0; j <= 9; ++j)
if (S[i + 1] - '0' == j) Fail[Child[i][j]] = Child[Fail[i]][j];
else Child[i][j] = Child[Fail[i]][j];
for (int i = 0; i < m; ++i)
for (int j = 0; j <= 9; ++j)
if (Child[i][j] != m)
++M.Num[i][Child[i][j]];
} int main()
{
scanf("%d%d%d", &n, &m, &Mod);
scanf("%s", S + 1);
Prepare();
M = Pow(M, n);
Ans = 0;
for (int i = 0; i < m; ++i)
Ans = (Ans + M.Num[0][i]) % Mod;
printf("%d\n", Ans);
return 0;
}

  

[BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】的更多相关文章

  1. BZOJ 1009 GT考试 (AC自动机 + 矩阵乘法加速dp)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1009 题意: 准考证号为\(n\)位数\(X_1X_2....X_n(0<=X_ ...

  2. BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

    标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...

  3. P3193 [HNOI2008]GT考试(KMP+矩阵乘法加速dp)

    P3193 [HNOI2008]GT考试 思路: 设\(dp(i,j)\)为\(N\)位数从高到低第\(i\)位时,不吉利数字在第\(j\)位时的情况总数,那么转移方程就为: \[dp(i,j)=dp ...

  4. bzoj1009: [HNOI2008]GT考试 ac自动机+矩阵快速幂

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9 ...

  5. bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...

  6. 【bzoj1444】[Jsoi2009]有趣的游戏 AC自动机+矩阵乘法

    题目描述 输入 注意 是0<=P 输出 样例输入 样例输出 题解 AC自动机+矩阵乘法 先将所有字符串放到AC自动机中,求出Trie图. 然后构建邻接矩阵:如果x不是某个字符串的末位置,则x连向 ...

  7. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  8. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  9. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

随机推荐

  1. Spring MVC 3.0.5+Spring 3.0.5+MyBatis3.0.4全注解实例详解(五)

    这是本系列的最后一篇,主要讲一下FreeMarker模板引擎的基本概念与常用指令的使用方式.     一.FreemMarker基本概念     FreemMarker是一个用Java语言编写的模板引 ...

  2. UIPickerView实现省 市 区三级联动

    前几天用UIPickerView实现了一下三级联动具体的如下图

  3. AWS RDS 使用笔记

    创建VPC安全组 添加VPC子网 创建RDS子网组 创建RDS参数组 创建MySQL实例 查看RDS终端节点 使用 MySQL 监视器与数据库实例上的数据库连接 安装mysql client $ su ...

  4. Memcached原理

    Memcached是一套高性能的.分布式内存对象缓存系统.它由C写成,以Key/Value的方式将数据储存在内存中. 一.Memcached特性 Memcached作为高速运行的分布式缓存服务器,具有 ...

  5. php生成验证码图片

    0:效果图 1:index.php用来生成验证码图片 <?php session_start(); header ('Content-Type: image/png'); $image=imag ...

  6. java 静态方法

    在使用java的时候,你会发现,有些对象,需要new ,有些则不需要时,比如Math类 ); 如果你查看源码就会大致的发现,里面的属性和方法都是静态的: public static double si ...

  7. Log4Net 在多层项目中的使用小记

    原文地址:http://www.cnblogs.com/zdh8675/p/3645556.html 这几天刚好在调整一个项目,把一些自己不是很清楚的东西先试验一下,这篇文章主要是对我在项目中需要使用 ...

  8. 20160329javaweb之JSP -cookie入门

    一.什么是会话? •会话可简单理解为:用户开一个浏览器,点击多个超链接,访问服务器多个web资源,然后关闭浏览器,整个过程称之为一个会话. 会话过程中要解决的一些问题? •每个用户在使用浏览器与服务器 ...

  9. Android开发之Handler

    我们都知道应用程序开启后,安卓会开启一个主线程(UI线程),主线程管理UI控件,进行事件分发.那为什么会出现Handler呢? 例如你要是点击一个 Button ,Android会分发事件到Butto ...

  10. Timestamp的作用及与字符串的相互转换 .

    一.Timestamp的介绍 每一个数据库都有一个计数器,这个计数器记录着数据行的插入.更新行为.如果我们为一个表中增加 timestamp 列,那么,该列将记录每一个数据行的计数器值.假如数据库中当 ...