这题乍一看与半平面交并没有什么卵联系,然而每个靶子都可以转化为两个半平面。

scanf("%lf%lf%lf",&x,&ymin,&ymax);

于是乎就有ymin<=ax^2+bx<=ymax。(因为抛物线一定经过点(0,0),所以c=0)

考虑前一个有ax^2+bx>=ymin  <=>  ax^2+bx-ymin>=0。

#define A x^2

#define B x

#define C ymin

#define x' a

#define y' b

于是乎Ax'+By'+c>=0

这个式子貌似在哪见过的样子

于是乎上半平面交。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define pi (acos(-1.0))
#define maxn 200100
#define double long double
const long long inf=1e15;
int n,tot,sum; double sqr(double x){return x*x;} struct point{
double x,y;
}p[maxn]; struct line{
point from,to;
int id;
double slope;
}l[maxn],q[maxn],a[maxn]; point operator -(point a,point b){return(point){a.x-b.x,a.y-b.y};}
point operator +(point a,point b){return(point){a.x+b.x,a.y+b.y};}
double operator *(point a,point b){return a.x*b.y-a.y*b.x;}
bool operator ==(line a,line b){return a.slope==b.slope;}
bool operator <(line a,line b){
return a.slope<b.slope||(a.slope==b.slope && (a.to-a.from)*(b.to-a.from)<);
} point getpoint(line a,line b){
double t1=(b.to-a.from)*(a.to-a.from),t2=(a.to-a.from)*(b.from-a.from);
double t=t1/(t1+t2);
return (point){(b.from.x-b.to.x)*t+b.to.x,(b.from.y-b.to.y)*t+b.to.y};
} bool check(line a,line b,line c){
point d=getpoint(a,b);
return (c.to-c.from)*(d-c.from)<;
} bool bo(int x){
int cnt=;
for (int i=;i<=sum;i++) if (l[i].id<=x) a[++cnt]=l[i];
int head=,tail=;
q[]=a[],q[]=a[];
for (int i=;i<=cnt;i++){
while (head<tail && check(q[tail-],q[tail],a[i])) tail--;
while (head<tail && check(q[head+],q[head],a[i])) head++;
q[++tail]=a[i];
}
while (head<tail && check(q[tail-],q[tail],q[head])) tail--;
while (head<tail && check(q[head+],q[head],q[tail])) head++;
return tail>head+;
} int main(){
scanf("%d",&n);
l[++tot].to=(point){-inf,inf},l[tot].from=(point){inf,inf};
l[++tot].to=(point){inf,inf},l[tot].from=(point){inf,-inf};
l[++tot].to=(point){inf,-inf},l[tot].from=(point){-inf,-inf};
l[++tot].to=(point){-inf,-inf},l[tot].from=(point){-inf,inf};
for (int i=;i<=n;i++){
double x,y1,y2;
scanf("%llf%llf%llf",&x,&y1,&y2);
double A=sqr(x),B=x,C=-y1;
l[++tot].from=(point){-,(A-C)/B},l[tot].to=(point){,(-A-C)/B},l[tot].id=i;
C=-y2;
l[++tot].from=(point){,(-A-C)/B},l[tot].to=(point){-,(A-C)/B},l[tot].id=i;
} for (int i=;i<=tot;i++) l[i].slope=atan2(l[i].to.y-l[i].from.y,l[i].to.x-l[i].from.x);
sort(l+,l+tot+);
sum=unique(l+,l+tot+)-l;
sum--;
int l=,r=n;
while (l<=r){
int mid=(l+r)>>;
if (bo(mid)) l=mid+;
else r=mid-;
}
printf("%d",r);
return ;
}

bzoj2732: [HNOI2012]射箭 半平面交的更多相关文章

  1. bzoj 2732: [HNOI2012]射箭 半平面交

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2732 题解: 这道题的做法我不想说什么了... 其他题解都有说做法... 即使是我上午做 ...

  2. bzoj 2732 射箭 半平面交

    2732: [HNOI2012]射箭 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2531  Solved: 848[Submit][Status] ...

  3. 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)

    洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...

  4. [bzoj2732][HNOI2012]射箭

    Description 沫沫最近在玩一个二维的射箭游戏,如下图所示,这个游戏中的$x$轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴.沫沫控制一个位于$(0, ...

  5. 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交

    4515: [Sdoi2016]游戏 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 129[Submit][Status][ ...

  6. poj3335 半平面交

    题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...

  7. POJ3525 半平面交

    题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...

  8. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  9. bzoj2618[Cqoi2006]凸多边形 半平面交

    这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...

随机推荐

  1. Could not load db driver class: com.mysql.jdbc.Driver解决方法

    14/03/26 22:43:24 ERROR sqoop.Sqoop: Got exception running Sqoop: java.lang.RuntimeException: Could ...

  2. 各大算法专题-STL篇

    这篇文章着重记录c++中STL的用法.主要粗略的介绍其用法,以知识点的形式呈现其功能,不会深入源码分析其工作原理. 排序和检索. sort(a,a+n),对a[0]往后的n个元素(包括a[0])进行排 ...

  3. 局域网接入Internet

    说在前面的话 局域网接入Internet的方式多样: 有1传统的Modem(调制解调器)拨号接入,费用低廉的2 ISDN和 3 ADSL接入,费用较高的4 DDN专线接入,5 Cable Modem高 ...

  4. Learning JavaScript Design Patterns The Module Pattern

    The Module Pattern Modules Modules are an integral piece of any robust application's architecture an ...

  5. Unity定时器

    需求:制作定时器,运行3秒后执行第一次,之后每隔3秒执行一次操作. 1.使用变量在Update中计时 public class TestTimer : MonoBehaviour { private ...

  6. Hadoop权威指南(中文版,第2版)【分享】

    下载地址 Hadoop权威指南(中文版,第2版) http://download.csdn.net/download/u011000529/5726789 (友情提示:请点击右下的 “联通下载” 或者 ...

  7. Linq-表达式常用写法

    这里主要是将数据库中的常用操作用LAMBDA表达式重新表示了下,用法不多,但相对较常用,等有时间了还会扩展,并将查询语句及LINQ到时也一并重新整理下:1.select语句:books.Select( ...

  8. SEAndroid安全机制对Binder IPC的保护分析

    在SEAndroid安全机制中,除了文件和属性,还有Binder IPC须要保护.Binder IPC是Android系统的灵魂,使用得相当广泛又频繁.比如,应用程序都是Binder IPC请求訪问系 ...

  9. [Webpack 2] Import a non-ES6 module with Webpack

    When you have a dependency that does not export itself properly, you can use the exports-loader to f ...

  10. GOOGLE------Reilly_Open_Source_Award

    https://en.wikipedia.org/wiki/O%27Reilly_Open_Source_Award#2016