题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式:

第1行:一个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

输出格式:

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

输入输出样例

输入样例#1:

5
5 7 1 2 10
输出样例#1:

145
3 1 2 4 5 其实还是比较水的题,因为是中序遍历,所以,根节点在中间,那么就是一个枚举根节点划分区间,有点像石子合并。
至于怎么求前序遍历,可以在递归的时候存储一遍,一旦更新值,就将祖先也更新处理,不是很难。
 #include <iostream>
#include <fstream>
#include <cstdlib>
#include <cstring>
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
using namespace std;
int cnt_node=;
int gra_node[]={};
int jiyi[][]={};
int root[][]={};
int dg(int ks,int js);
void out_DLR(int ks,int js); int dg(int ks,int js){
if(ks==js)return gra_node[ks];
if(ks+==js)return gra_node[ks]+gra_node[js];
if(jiyi[ks][js]!=-)return jiyi[ks][js];
int tem=;
tem=dg(ks+,js)+gra_node[ks];
root[ks][js]=ks;
for(int x=ks+;x<js;x++){
int b=dg(ks,x-)*dg(x+,js)+gra_node[x];
if(b>tem){tem=b;root[ks][js]=x;}
}
int b=dg(ks,js-);
if(b>tem){tem=b;root[ks][js]=js;}
jiyi[ks][js]=tem;
return tem;
} void out_DLR(int ks,int js){
if(ks==js){cout<<ks<<" ";return;}
if(ks+==js){cout<<ks<<" "<<js<<" ";return;}
cout<<root[ks][js]<<" ";
out_DLR(ks,root[ks][js]-);
out_DLR(root[ks][js]+,js);
return;
} int main(int argc, char** argv) {
cin>>cnt_node;
for(int x=;x<=cnt_node;x++)cin>>gra_node[x]; memset(jiyi,-,sizeof(jiyi));
int ans=dg(,cnt_node);
cout<<ans<<endl;
out_DLR(,cnt_node);
return ;
}

洛谷 P1040 加分二叉树的更多相关文章

  1. 洛谷P1040 加分二叉树(区间dp)

    P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...

  2. [洛谷P1040] 加分二叉树

    洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...

  3. 洛谷P1040 加分二叉树(树形dp)

    加分二叉树 时间限制: 1 Sec  内存限制: 125 MB提交: 11  解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...

  4. 洛谷P1040 加分二叉树【记忆化搜索】

    题目链接:https://www.luogu.org/problemnew/show/P1040 题意: 某一个二叉树的中序遍历是1~n,每个节点有一个分数(正整数). 二叉树的分数是左子树分数乘右子 ...

  5. [NOIP2003] 提高组 洛谷P1040 加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  6. 洛谷P1040 加分二叉树题解

    dp即可 \(f[i][j]\)表示i到j的加分 相当于区间dp了 #include<cstdio> using namespace std; int v[50]; int f[55][5 ...

  7. 【洛谷】P1040 加分二叉树

    [洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...

  8. P1040 加分二叉树

    转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...

  9. P1040 加分二叉树 区间dp

    题目描述 设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第ii个节 ...

随机推荐

  1. 多重背包的入门题目HDU1171,2191,2844.

    首先,什么叫多重背包呢? 大概意思就是:一个背包有V总容量,有N种物品,其价值分别为Val1,Val2--,Val3,体积对应的是Vol1,Vol2,--,Vol3,件数对应Num1,Num2--,N ...

  2. CentOS 6.4 64位 安装 mysql 5.6.24

    下载安装包 由于官网访问及版本选择下载不太方便,使用 suho 的源进行下载 http://mirrors.sohu.com/mysql/MySQL-5.6/ 下载如下三个安装包: MySQL-ser ...

  3. 在js脚本里计算多个小数的加法问题

    当在js脚本里计算多个小数的加法时,算得的结果往往会自动取整,这时候我们就应该加入以下代码: function toDecimal(x) { var val = Number(x); if (!isN ...

  4. Uninstall office15 click-to-run extensibility Component

    Summary : Uninstall office15 click-to-run extensibility Component,How to resolve Uninstall office15 ...

  5. 简单python2.7.3安装setuptools模块

    下载setuptools https://pypi.python.org/packages/2.7/s/setuptools/setuptools-0.6c11-py2.7.egg 安装 .6c11- ...

  6. [转]IoC框架

    1 IoC理论的背景     我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑.   图1:软件系统中耦合的对象 如果 ...

  7. 学习Swift -- 错误处理

    错误处理 错误处理是响应错误以及从错误中返回的过程.swift提供第一类错误支持,包括在运行时抛出,捕获,传送和控制可回收错误. 一些函数和方法不能总保证能够执行所有代码或产生有用的输出.可空类型用来 ...

  8. winfrom获得鼠标的坐标

    Point mouse = this.PointToScreen(Control.MousePosition);label1.Text = mouse.X.ToString() + ":&q ...

  9. bzoj 1500: [NOI2005]维修数列 splay

    1500: [NOI2005]维修数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 6556  Solved: 1963[Submit][Status ...

  10. 获取设备mac地址和md5加密

    SGMSettingConfig.h #import <Foundation/Foundation.h> @interface SGMSettingConfig : NSObject{ N ...