洛谷题目链接:[CQOI2007]余数求和

题目背景

数学题,无背景

题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29

输入输出格式

输入格式:

两个整数n k

输出格式:

答案

输入输出样例

输入样例#1:

10 5

输出样例#1:

29

说明

30%: n,k <= 1000

60%: n,k <= 10^6

100% n,k <= 10^9


一句话题意: 给出\(n,k(n,k<=10^9)\),求$$\sum_{i=1}^{n}k\mod i$$


题解: 学习这个之前我们首先需要知道什么是整除分块.

那么对于一个块内,所有的\(\lfloor \frac n i \rfloor\)都是一样的.但是如果我还想让一个块内所有的\(\lfloor \frac n i \rfloor\)都一样该怎么办呢?我们来看一张图(竖线是块与块的分界线):

其实我们可以将原来的一个块再拆成几个块再计算.

既然知道了这个方法,我们就可以继续化简式子了.

\[ans=\sum_{i=1}^{n}k\mod i
\]

\[ans=\sum_{i=1}^{n}k-\lfloor \frac{k}{i}\rfloor \times i
\]

根据我们分的块,在同一个块内的\(\lfloor \frac{k}{i}\rfloor\)和\(\lfloor \frac{n}{i}\rfloor\)是一样的,所以这个块内的答案也就可以用\((r-l+1) \times (k \mod l+k \mod r)/2\)表示,然后再判断下一个区间的位置就可以了.

很好想的,代码也很好理解,如果不懂可以看代码再理解一下.

#include<bits/stdc++.h>
using namespace std;
typedef int _int;
#define int long long int n, k, ans = 0; _int main(){
cin >> n >> k;
int l = 1, rn, rk, lim = min(n, k);
while(l <= lim){
rn = n/(n/l), rk = k/(k/l);
if(rn < rk) ans += (rn-l+1)*(k%l+k%rn)/2, l = rn+1;
else ans += (rk-l+1)*(k%l+k%rk)/2, l = rk+1;
}
if(lim == k) ans += (n-k)*k;
cout << ans << endl;
return 0;
}

[洛谷P2261] [CQOI2007]余数求和的更多相关文章

  1. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  2. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  3. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  4. 洛谷 P2261 [CQOI2007]余数求和

    洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...

  5. 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块

    参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...

  6. 【洛谷P2261】余数求和

    题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...

  7. 洛谷 2261 [CQOI2007]余数求和

    题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...

  8. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  9. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

随机推荐

  1. Thunder团队第三周 - Scrum会议7

    Scrum会议7 小组名称:Thunder 项目名称:i阅app Scrum Master:胡佑蓉 工作照片: 邹双黛在照相,所以图片中没有该同学. 参会成员: 王航:http://www.cnblo ...

  2. 20172314 Android程序设计 实验四

    课程:<程序设计与数据结构> 班级: 1723 姓名: 方艺雯 学号:20172314 实验教师:王志强 实验日期:2018年5月30日 必修/选修: 必修 1.实验内容及要求 (1)An ...

  3. About Dynamic Programming

    Main Point: Dynamic Programming = Divide + Remember + Guess 1. Divide the key is to find the subprob ...

  4. finecms

    finecms地址 还不错的国内CMS http://www.dayrui.com/doc/246.html

  5. TCP/IP 三次握手四次挥手

    TCP运输连接 TCP连接建立过程中要解决以下三个问题: (1)要使每一方能够确知双方的存在. (2)要允许双方协商一些参数(如最大窗口值.是否使用窗口扩大选项和时间戳选项以及服务质量等). (3)能 ...

  6. LintCode-374.螺旋矩阵

    螺旋矩阵 给定一个包含 m x n 个要素的矩阵,(m 行, n 列),按照螺旋顺序,返回该矩阵中的所有要素. 样例 给定如下矩阵: [     [ 1, 2, 3 ],     [ 4, 5, 6 ...

  7. 透过汇编另眼看世界之DLL导出函数调用

    前言:我一直对DLL技术充满好奇,一方面是因为我对DLL的导入/导出机制还不是特别的了解,另一面是因为我发现:DLL技术在Windows平台下占有重要的地位,几乎所有的Win32 API都是以导出函数 ...

  8. JS中的数组转变成JSON格式字符串的方法

    有一个JS数组,如: var arr = [["projectname1","projectnumber1"],["projectname2" ...

  9. 理解BitSet

    先来看几道面试题: 1.统计40亿个数据中没有出现的数据,将40亿个不同数据进行排序. 2.现在有1千万个随机数,随机数的范围在1到1亿之间,要求写出一种算法,将1到1亿之间没有在随机数中的数求出来. ...

  10. Python自定义包在linux服务器导入错误的解决办法

    在本地机器上跑python代码,自己定义的文件进行导包运行是没有问题,但是放到linux服务器上的时候就会提示 ImportError:No module named xxxx(要导入的文件包名) 在 ...