The Boss on Mars
The Boss on Mars
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2327 Accepted Submission(s):
718
Company on Mars), and it’s owned by a younger boss.
Due to no moons
around Mars, the employees can only get the salaries per-year. There are n
employees in ACM, and it’s time for them to get salaries from their boss. All
employees are numbered from 1 to n. With the unknown reasons, if the employee’s
work number is k, he can get k^4 Mars dollars this year. So the employees
working for the ACM are very rich.
Because the number of employees is so
large that the boss of ACM must distribute too much money, he wants to fire the
people whose work number is co-prime with n next year. Now the boss wants to
know how much he will save after the dismissal.
number of test cases. (1 ≤ T ≤ 1000) Each test case, there is only one integer
n, indicating the number of employees in ACM. (1 ≤ n ≤ 10^8)
money the boss can save. Because the answer is so large, please module the
answer with 1,000,000,007.
4
5
354
Case1: sum=1+3*3*3*3=82
Case2: sum=1+2*2*2*2+3*3*3*3+4*4*4*4=354
http:
//acm.hdu.edu.cn/showproblem.php?pid=4059
///这题主要是公式问题,然后稍微对容斥原理计算个数,改为mult的特殊利用即可;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
///1~n这n个数的4次方和:n*(n+1)*(6*n*n*n+9*n*n+n-1)/30; 这里百度的公式;
typedef long long ll;
const ll N = 1e6+5;
const ll mod = 1e9+7;
ll n, ans;
ll get4mult(ll mult)
{
return
mult*mult%mod*mult%mod*mult%mod;
}
ll extgcd(ll a,ll b,ll &x,ll &y)
{
if
(b==0){
x = 1, y = 0;
return
a;
}
ll d = extgcd(b,a%b,x,y);
ll t = x;
x = y;
y = t-a/b*y;
return
d;
}
ll inverse(ll t)
{
ll x, y;
ll d = extgcd(t,mod,x,y);
return
(x%mod+mod)%mod;
}
ll calu(ll n)
{
return
n*(n+1)%mod*(6*n*n%mod*n%mod+9*n*n%mod+n-1)%mod*inverse(30)%mod;
}
ll rongchi(ll n)
{
ll m = n;
vector<ll> v;
for
(ll i = 2; i*i <= m; i++){
if
(m%i==0){
v.push_back(i);
while
(m%i==0) m/=i;
}
}
if
(m>1) v.push_back(m);
ll len = v.size();
for
(ll i = 1; i < (1<<len); i++){
ll mult = 1, ones = 0;
for
(ll j = 0; j < len; j++){
if
(i&(1<<j)){
ones++;
mult = mult*v[j];
}
}
if
(ones%2) {
/// 变成了 - 因为假设是原来的容斥,那么cnt指的是不互质的个数,是要被剪掉的;
///而本题:也是要减掉,但是不是计算个数,而是对每一个过程有作用,减去:减变为了加,加变为了减;
ans = ans-get4mult(mult)*calu(n/mult);
ans = (ans%mod+mod)%mod;
}
else
/// 变成了 +
{
ans = ans+get4mult(mult)*calu(n/mult);
ans = (ans%mod+mod)%mod;
}
}
v.clear();
return
ans;
}
int main()
{
ll T;
cin>>T;
while
(T--)
{
cin>>n;
ans = calu(n);
printf(
"%lld\n"
,rongchi(n));
}
return
0;
}
The Boss on Mars的更多相关文章
- hdu4059 The Boss on Mars(差分+容斥原理)
题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设 则 为一阶差分. 二阶差分: n阶差分: 且可推出 性质: 1. ...
- HDU 4059 The Boss on Mars 容斥原理
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu4059 The Boss on Mars
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4059 The Boss on Mars(容斥原理 + 四次方求和)
传送门 The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- 数论 + 容斥 - HDU 4059 The Boss on Mars
The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...
- HDU 4059 The Boss on Mars(容斥原理)
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4059 The Boss on Mars
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu4059 The Boss on Mars 容斥原理
On Mars, there is a huge company called ACM (A huge Company on Mars), and it’s owned by a younger bo ...
- zoj 3547 The Boss on Mars
需要用到概率论的容斥定理以及计算1 ^ 4 + 2 ^ 4 + ……+ n ^ 4的计算公式1^4+2^4+……+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30 #pragma comm ...
随机推荐
- C# format 日期 各种 符号 实例分析如何精确C#日期格式到毫秒
摘 自: http://developer.51cto.com/art/200908/141145.htm 实例分析如何精确C#日期格式到毫秒 2009-08-03 10:48 paulfzm jav ...
- 如何正确理解关键字"with"与上下文管理器(转载)
如果你有阅读源码的习惯,可能会看到一些优秀的代码经常出现带有 “with” 关键字的语句,它通常用在什么场景呢?今天就来说说 with 和 上下文管理器. 对于系统资源如文件.数据库连接.socket ...
- python灰帽子学习感想
Gray Hat Python Python Programming for hackers and reverse engineers Python灰帽子:黑客与逆向project师的Python编 ...
- Mac OS X 10.10 执行 Eclipse 提示须要安装 Java
- Set 遍历的三种方法
1.迭代遍历:Set<String> set = new HashSet<String>();Iterator<String> it = set.iterator( ...
- has been modified since the precompiled header地图错误
添加高德地图的一个错误 has been modified since the precompiled header 解决方案: xcode---product----clean 清理重新编译一下就 ...
- Android 微信支付,授权,分享回调区分记录
我们做项目中避免不了和微信打交道,其中最常用的也就是授权登录与分享和支付了. 本篇文章记录这三个功能同时使用的时候,回调怎么来区分.因为每个功能都有自己的回调状态.前期集成与发送,资料很多了就不在这里 ...
- java开发中的一些概念名词
1. JavaBeans JavaBean是符合某种规范的Java组件,也就是Java类.它必须满足如下规范: 1)必须有一个零参数的默认构造函数 2)必须有get和set方法,类的字段必须通过get ...
- 算法笔记_073:哈密顿回路问题(Java)
目录 1 问题描述 2 解决方案 1 问题描述 什么是哈密顿回路? 引用自百度百科: 哈密顿图(哈密尔顿图)(英语:Hamiltonian path,或Traceable path)是一个无向图, ...
- 运行maven pom.xml文件后编译环境变为jdk1.5
idea中运行pom.xml文件后,将编译环境变成了1.5,造成一系列的编译问题很是不方便. 以下是解决方法: 在"pom.xml"里加入如下代码: <properties& ...