GCD

描述

The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.

(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:

Given integers N and M,please answer sum of X satisfies 1<=X<=N and (X,N)>=M.

输入

The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (1<=N<=10^9, 1<=M<=10^9), representing a test case.

输出

Output the answer mod 1000000007

样例输入

3

1 1

10 2

10000 72

样例输出

1

35

1305000

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std; typedef long long ll;
const int maxn=1001;
const int INF=0x3f3f3f3f; const int mod=1000000007; ll Euler(ll n)//欧拉函数 求φ(n)
{
ll c=n,i;
for(i=2; i*i<=n; i++)
{
if(n%i==0)
{
while(n%i==0) n/=i;
c=c/i*(i-1);//φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn);
}
}
if(n!=1)
c=c/n*(n-1);
return c;
}
//计算满足条件 gcd(x,n)>=m的所有 x 的和
ll Euler_sum(ll k)
{
if(k==1||k==2)
return 1;
else return k*Euler(k)/2;
} int main()
{
int cnt;
ll t,n,m;
scanf("%lld",&t);
while(t--)
{
ll i,sum=0;
scanf("%lld %lld",&n,&m);
for(i=1; i<=sqrt(n); i++)
{
if(n%i==0)
{
if(i>=m)//计算满足条件 >=m 的 i( i 一定是n的因子)
{
sum=(sum+i*Euler_sum(n/i))%mod;
}
//为了防止一种特殊情况才有 i*i!=n, 比如 16 4 这一组,如果没有判断条件就会在i=4的时候计算两次
if(i*i!=n&&n/i>=m)//计算满足条件 >=m 的 n/i ( n/i 也一定是n的因子)
{
//按步骤走这里有两种情况:(1)i和n/i都满足>=m的条件(2)i不满足>=m但是n/i满足
//不管哪种情况如果n/i满足>=m就往下走
sum=(sum+n/i*Euler_sum(i))%mod;
}
}
}
printf("%lld\n",sum);
}
return 0;
}

nyoj 1007 GCD(数学题 欧拉函数的应用)的更多相关文章

  1. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  2. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  3. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  6. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  7. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  8. GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

  9. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

随机推荐

  1. Moq 和 RhinoMocks

    我们在做单元测试的时候,利用mock可轻松构建出测试需要的类或接口,而不需要编写繁琐的测试代码. .net 下我知道Moq与Rhino Mocks这两个框架. Moq 网上介绍的比较多. Rhino ...

  2. [J]computer network tarjan边双联通分量+树的直径

    https://odzkskevi.qnssl.com/b660f16d70db1969261cd8b11235ec99?v=1537580031 [2012-2013 ACM Central Reg ...

  3. Linux-进程间通信(四): 域套接字

    1. 域套接字: (1) 只能用于同一设备上不同进程之间的通信: (2) 效率高于网络套接字.域套接字仅仅是复制数据,并不走协议栈: (3) 可靠,全双工: 2. 域套接字地址结构: struct s ...

  4. git subtree:无缝管理通用子项目

    移动互联网的爆发以及响应式页面的尴尬症,开发web和mobile项目成为了标配,当然实际情况下,会有更多的项目. 多项目开发对于前端来说是个很大的挑战✦ 重复,重复的前端架构,重复的前端依赖,重复的工 ...

  5. 分割线用CSS样式做出来的效果

    一:单个标签实现分隔线:. ; ; line-height: 1px; border-left: 200px solid #ddd; border-right: 200px solid #ddd; t ...

  6. javascript方法--apply()

    今天琢磨了一下apply,以前对这个方法觉得比较懵,今天一琢磨确实觉得挺好玩的. 一开始把MDN的apply文档看了一遍,感觉不是很理解,而且有一些东西也是知道但是比较模糊,所以还是一步一步来,不懂查 ...

  7. Mysql 数据库学习笔记03 存储过程

    一.存储过程:如下           通过 out .inout 将结果输出,可以输出多个值. * 调用存储过程: call 存储名称(参数1,参数2,...); 如指定参数不符合要求,返回 Emp ...

  8. Struts2学习笔记04 之 拦截器

    一.创建拦截器组件 1. 创建一个类,实现Interceptor接口,并实现intercept方法 2.注册拦截器 3.引用拦截器 二.拦截器栈 预置拦截器: 默认引用拦截器 拦截器调用顺序: Fil ...

  9. kafka 设置消费者线程数

    http://blog.csdn.net/derekjiang/article/details/9053863 分布式发布订阅消息系统 Kafka 架构设计 - 目前见到的最好的Kafka中文文章 M ...

  10. Python VUE 基础知识

    一 什么是VUE 它是一个构建用户界面的JavaScript框架,自动生成(js,css,HTML文件) 二 如何使用VUE 1.  应用vues.js <script src="vu ...