【UOJ #179】线性规划 单纯形模板
http://uoj.ac/problem/179
终于写出来了单纯性算法的板子,抄的网上大爷的qwq
辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗?
2017-3-6UPD:问了网上的大爷,知道是防止被卡时间(因为单纯形的复杂度是指数级的)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 23;
const double eps = 1e-8;
double a[N][N], ans[N];
int n, m, t, id[N << 1];
void pivot(int l, int e) {
swap(id[e], id[n + l]);
double r = a[l][e]; a[l][e] = 1;
for (int j = 0; j <= n; ++j)
a[l][j] /= r;
for (int i = 0; i <= m; ++i)
if (i != l) {
r = a[i][e]; a[i][e] = 0;
for (int j = 0; j <= n; ++j)
a[i][j] -= r * a[l][j];
}
}
int main() {
scanf("%d%d%d", &n, &m, &t);
int i, j, l, e; double k, kk;
for (j = 1; j <= n; ++j) scanf("%lf", &a[0][j]), id[j] = j;
for (i = 1; i <= m; ++i) {
for (j = 1; j <= n; ++j)
scanf("%lf", &a[i][j]);
scanf("%lf", &a[i][0]);
}
while (true) {
l = e = 0; k = -eps;
for (i = 1; i <= m; ++i)
if (a[i][0] < k) {
k = a[i][0];
l = i;
}
if (!l) break;
k = -eps;
for (j = 1; j <= n; ++j)
if (a[l][j] < k && (!e || (rand() & 1))) {
k = a[l][j];
e = j;
}
if (!e) {puts("Infeasible"); return 0;}
pivot(l, e);
}
while (true) {
for (j = 1; j <= n; ++j)
if (a[0][j] > eps)
break;
if ((e = j) > n) break;
k = 1e18; l = 0;
for (i = 1; i <= m; ++i)
if (a[i][e] > eps && (kk = (a[i][0] / a[i][e])) < k) {
k = kk;
l = i;
}
if (!l) {puts("Unbounded"); return 0;}
pivot(l, e);
}
printf("%.10lf\n", -a[0][0]);
if (!t) return 0;
for (i = 1; i <= m; ++i) ans[id[n + i]] = a[i][0];
for (i = 1; i <= n; ++i) printf("%.10lf ", ans[i]);
return 0;
}
【UOJ #179】线性规划 单纯形模板的更多相关文章
- UOJ.179.线性规划(单纯形)
题目链接 这写得还不错:http://www.cnblogs.com/zzqsblog/p/5457091.html 引入基变量\(x_{i+n}\),将约束\(\sum_{i=1}^m a_{ij} ...
- UOJ#179. 线性规划[模板]
传送门 http://uoj.ac/problem/179 震惊,博主竟然还不会线性规划! 单纯形实在学不会啊……背个板子当黑盒用…… 学(chao)了NanoApe dalao的板子 #includ ...
- UOJ#179. 线性规划(线性规划)
描述 提交 自定义测试 这是一道模板题. (这个题现在标程挂了..哪位哥哥愿意提供一下靠谱的标程呀?) 本题中你需要求解一个标准型线性规划: 有 nn 个实数变量 x1,x2,…,xnx1,x2,…, ...
- uoj#179 线性规划
这是一道模板题. 本题中你需要求解一个标准型线性规划: 有nn个实数变量x1,x2,⋯,xnx1,x2,⋯,xn和mm条约束,其中第ii条约束形如∑nj=1aijxj≤bi∑j=1naijxj≤bi. ...
- 【UOJ#179】线性规划 单纯形
题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...
- UVA 10498 Happiness(线性规划-单纯形)
Description Prof. Kaykobad has given Nasa the duty of buying some food for the ACM contestents. Nasa ...
- 【UOJ 179】 #179. 线性规划 (单纯形法)
http://uoj.ac/problem/179 补充那一列修改方法: 对于第i行: $$xi=bi-\sum Aij*xj$$ $$=bi-\sum_{j!=e} Aij*xj-Aie*xe ...
- UOJ #35. 后缀排序 后缀数组 模板
http://uoj.ac/problem/35 模板题,重新理了一遍关系.看注释吧.充分理解了倍增的意义,翻倍之后对上一次排序的利用是通过一种类似于队列的方式完成的. #include<ios ...
- 【UOJ179】线性规划(单纯形)
题意: 思路:单纯形模板 ..,..]of double; idx,idy,q:..]of longint; c:..]of double; n,m,i,j,op,x,y:longint; eps,m ...
随机推荐
- 基于FPGA的HDTV视频图像灰度直方图统计算法设计
随着HDTV的普及,以LCD-TV为主的高清数字电视逐渐进入蓬勃发展时期.与传统CRT电视不同的是,这些高清数字电视需要较复杂的视频处理电路来驱动,比如:模数转换(A/D Converter).去隔行 ...
- java 连接数据库报错:Caused by: com.mysql.cj.exceptions.InvalidConnectionAttributeException: The server time zone value '
1.解决方法: 报错信息为: Caused by: com.mysql.cj.exceptions.InvalidConnectionAttributeException: The server ti ...
- 6、MySQL索引种类
1.普通索引 这是最基本的索引,它没有任何限制,比如上文中为title字段创建的索引就是一个普通索引,MyIASM中默认的BTREE类型的索引,也是我们大多数情况下用到的索引. –直接创建索引 CRE ...
- (Git 钩子)自定义你的工作流 和引用日志
Git 钩子是在 Git 仓库中特定事件发生时自动运行的脚本.它可以让你自定义 Git 内部的行为,在开发周期中的关键点触发自定义的行为. Git 钩子最常见的使用场景包括推行提交规范,根据仓库状态改 ...
- oracle中有关表的操作
在Oracle中查看所有的表: select * from tab/dba_tables/dba_objects/cat; 看用户建立的表 : select table_name from user_ ...
- 【转】gif文件格式详解
1.概述 ~~~~~~~~ GIF(Graphics Interchange Format,图形交换格式)文件是由 CompuServe公司开发的图形文件格式,版权所有,任何商业目的使用均须 Comp ...
- 时间盲注脚本.py
时间盲注脚本 #!/usr/bin/env python # -*- coding: utf-8 -*- import requests import time payloads = 'abcdefg ...
- gcc -rpath 指定动态库路径
gcc -rpath 指定动态库路径 http://blog.csdn.net/v6543210/article/details/44809405
- 110.Balanced Binary Tree---《剑指offer》面试39
题目链接 题目大意:判断一个二叉树是否是平衡二叉树. 法一:dfs.利用求解二叉树的高度延伸,先计算左子树的高度,再计算右子树的高度,然后两者进行比较.o(nlgn).代码如下(耗时4ms): pub ...
- FineReport——JS监听其他控件事件
首先在参数面板和报表中分布添加一个button,用于被监听: 参数面板 控件名:temp: temp点击事件:alert("temp"); 报表 控件名:exprt: temp点击 ...