题目描述:
  在N件物品取出若干件放在容量为W的背包里,每件物品的体积为W1,W2……Wn(Wi为整数),与之相对应的价值为P1,P2……Pn(Pi为整数)。求背包能够容纳的最大价值。
Input
第1行,2个整数,N和W中间用空格隔开。N为物品的数量,W为背包的容量。(1 <= N <= 100,1 <= W <= 10000)
第2 - N + 1行,每行2个整数,Wi和Pi,分别是物品的体积和物品的价值。(1 <= Wi, Pi <= 10000)
Output
输出可以容纳的最大价值。
Input示例
3 6
2 5
3 8
4 9
Output示例
14

思路:设bp[i][v]为前i个物品放入到容量为v的背包当中;
    状态转移方程为:

      

    for(int i=1;i<=n;i++){
        for(int v=1;v<=w;v++){
            if(v<W[i]) bp[i][v]=bp[i-1][v];
            else bp[i][v]=max(bp[i-1][v],bp[i-1][v-W[i]]+P[i]);
            //cout<<i<<"  "<<v<<"  "<<bp[i][v]<<endl;
        }
    }
优化:使用一位数组进行优化;将算法复杂度优化到O(n);
  for(int i=w;i>=W[i];i--)
    dp[i]=max(dp[i],dp[i-W[i]]+P[i]);

背包问题(dp基础)的更多相关文章

  1. 【专章】dp基础

    知识储备:dp入门. 好了,完成了dp入门,我们可以做一些稍微不是那么裸的题了. ----------------------------------------------------------- ...

  2. 【学习笔记】dp基础

    知识储备:dp入门. 好了,完成了dp入门,我们可以做一些稍微不是那么裸的题了. dp基础,主要是做题,只有练习才能彻底掌握. 洛谷P1417 烹调方案 分析:由于时间的先后会对结果有影响,所以c[i ...

  3. poj 1742 多重背包问题 dp算法

    题意:硬币分别有 A1.....An种,每种各有C1......Cn个,问组成小于m的有多少种 思路:多重背包问题 dp[i][j]表示用前i种硬币组成j最多剩下多少个  dp=-1的表示凑不齐 dp ...

  4. hdu 2089 不要62 (数位dp基础题)

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  6. DP基础(线性DP)总结

    DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...

  7. 树形dp基础

    今天来给大家讲一下数形dp基础 树形dp常与树上问题(lca.直径.重心)结合起来 而这里只讲最最基础的树上dp 1.选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程 ...

  8. poj2642 The Brick Stops Here(DP基础题)

    比基础的多一点东西的背包问题. 链接:POJ2642 大意:有N种砖,每种花费p[i],含铜量c[i],现需要用M种不同的砖融成含铜量在Cmin到Cmax之间(可等于)的砖,即这M种砖的含铜量平均值在 ...

  9. 2014 Super Training #7 C Diablo III --背包问题(DP)

    原题: ZOJ 3769 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3769 一个带有一些限制的背包问题. 假设在没有限 ...

随机推荐

  1. socket 极值数量

    在做Socket 编程时,我们经常会要问,单机最多可以建立多少个 TCP 连接,本文将介绍如何调整系统参数来调整单机的最大TCP连接数. Windows 下单机的TCP连接数有多个参数共同决定,下面一 ...

  2. Parallel

    介绍 C# 4.0 的新特性之并行运算 Parallel.For - for 循环的并行运算 Parallel.ForEach - foreach 循环的并行运算 Parallel.Invoke - ...

  3. 【洛谷 P4051】 [JSOI2007]字符加密(后缀数组)

    题目链接 两眼题.. 第一眼裸SA 第二眼要复制一倍再跑SA. 一遍过.. #include <cstdio> #include <cstring> #include < ...

  4. hdu 1070 Milk(贪心)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1070 Milk Time Limit: 2000/1000 MS (Java/Others)    M ...

  5. 【shell】shell中各种括号的作用()、(())、[]、[[]]、{}

    一.小括号,圆括号() 1.单小括号 ()    ①命令组.括号中的命令将会新开一个子shell顺序执行,所以括号中的变量不能够被脚本余下的部分使用.括号中多个命令之间用分号隔开,最后一个命令可以没有 ...

  6. linux中使用mysql数据库

    在安装完数据库后,如果没有设置root的mysql密码,在命令行输入mysql即可进入数据库 show databases;(有分号):查看当前存在的数据库 create database 名字:创建 ...

  7. linux 系统调用fork()

    头文件: #include<unistd.h> #include<sys/types.h> 函数原型: pid_t fork( void); (pid_t 是一个宏定义,其实质 ...

  8. squid 代理服务

    squid代理服务分为两种方式: 一.正向代理(用在企业的办公环境中,员工上网需要通过Squid代理来上网) 客户端发送请求到代理服务器,代理服务器去向真正的服务器请求结果,并将结果返回给客户端 二. ...

  9. vue 文件引入

    直接 <script> 引入 直接下载并用 <script> 标签引入,Vue 会被注册为一个全局变量.重要提示:在开发时请用开发版本,遇到常见错误它会给出友好的警告. 开发环 ...

  10. jQuery 中的 unbind() 方法

    jQuery 中的 unbind() 方法是 bind() 方法的反向操作,从每一个匹配的元素中删除绑定的事件. 语法结构: unbind([type][, data]); type是事件类型,dat ...