学习链接:http://blog.csdn.net/lwt36/article/details/48908031

学习扫描线主要学习的是一种扫描的思想,后期可以求解很多问题。

扫描线求矩形周长并

hdu 1928

Picture

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4795    Accepted Submission(s): 2339

Problem Description
A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter.

Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.

The corresponding boundary is the whole set of line segments drawn in Figure 2.

The vertices of all rectangles have integer coordinates.

 
Input
Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate.

0 <= number of rectangles < 5000 
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.

Please process to the end of file.

 
Output
Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.
 
Sample Input
7
-15 0 5 10
-5 8 20 25
15 -4 24 14
0 -6 16 4
2 15 10 22
30 10 36 20
34 0 40 16
 
Sample Output
228
 
Source
 
Recommend
linle
 
 

 
 
 
 //#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define clr(x) memset(x,0,sizeof(x))
#define MAXN 50010
using namespace std;
struct edgx
{
int l,u,x;
int d;
}edgex[MAXN];
struct edgy
{
int l,r,y;
int d;
}edgey[MAXN];
struct seg
{
int l,r,cov,len;
}segt[MAXN<<];
int cntx,cnty;
int x[MAXN],y[MAXN],vec[MAXN];
bool cmpy(edgy a,edgy b)
{
if(a.y==b.y) return a.d>b.d;
return a.y<b.y;
}
bool cmpx(edgx a,edgx b)
{
if(a.x==b.x) return a.d>b.d;
return a.x<b.x;
}
void init(int i,int l,int r)
{
segt[i]=(seg){l,r,,};
if(l==r)
return ;
int mid=(l+r)>>;
init(i<<,l,mid);
init(i<<|,mid+,r);
return ;
}
void pushup(int i)
{
if(segt[i].cov)
{
segt[i].len=vec[segt[i].r+]-vec[segt[i].l];
}
else if(segt[i].l==segt[i].r)
{
segt[i].len=;
}
else
{
segt[i].len=segt[i<<].len+segt[i<<|].len;
}
return ;
}
void update(int i,int l,int r,int value)
{
if(segt[i].l>=l && segt[i].r<=r)
{
segt[i].cov+=value;
pushup(i);
return ;
}
int mid=(segt[i].l+segt[i].r)>>;
if(mid>=r)
{
update(i<<,l,r,value);
}
else if(mid<l)
{
update(i<<|,l,r,value);
}
else
{
update(i<<,l,r,value);
update(i<<|,l,r,value);
}
pushup(i);
return ;
}
int main()
{
int x1,x2,y1,y2,n,m,T,ans,l,r,k;
while(scanf("%d",&n)!=EOF)
{
cntx=;
cnty=;
for(int i=;i<=n;i++)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
edgex[++cntx]=(edgx){y1,y2,x1,};
x[cntx]=x1;
edgex[++cntx]=(edgx){y1,y2,x2,-};
x[cntx]=x2;
edgey[++cnty]=(edgy){x1,x2,y1,};
y[cnty]=y1;
edgey[++cnty]=(edgy){x1,x2,y2,-};
y[cnty]=y2;
}
n<<=;
ans=;
memcpy(vec,x,sizeof(x));
sort(vec+,vec+n+);
m=unique(vec+,vec+n+)-vec-;
sort(edgey+,edgey+n+,cmpy);
init(,,m);
for(int i=;i<=n;i++)
if(edgey[i].l<edgey[i].r)
{
k=segt[].len;
l=lower_bound(vec+,vec+m+,edgey[i].l)-vec;
r=lower_bound(vec+,vec+m+,edgey[i].r)-vec;
update(,l,r-,edgey[i].d);
ans+=abs(segt[].len-k);
}
memcpy(vec,y,sizeof(y));
sort(vec+,vec+n+);
m=unique(vec+,vec+n+)-vec-;
sort(edgex+,edgex+n+,cmpx);
init(,,m);
for(int i=;i<=n;i++)
if(edgex[i].l<edgex[i].u)
{
k=segt[].len;
l=lower_bound(vec+,vec+m+,edgex[i].l)-vec;
r=lower_bound(vec+,vec+m+,edgex[i].u)-vec;
update(,l,r-,edgex[i].d);
ans+=abs(segt[].len-k);
}
printf("%d\n",ans);
}
return ;
}

hdu 1255 矩阵面积交

覆盖的面积

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5718    Accepted Submission(s): 2854

Problem Description
给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.

 
Input
输入数据的第一行是一个正整数T(1<=T<=100),代表测试数据的数量.每个测试数据的第一行是一个正整数N(1<=N<=1000),代表矩形的数量,然后是N行数据,每一行包含四个浮点数,代表平面上的一个矩形的左上角坐标和右下角坐标,矩形的上下边和X轴平行,左右边和Y轴平行.坐标的范围从0到100000.

注意:本题的输入数据较多,推荐使用scanf读入数据.

 
Output
对于每组测试数据,请计算出被这些矩形覆盖过至少两次的区域的面积.结果保留两位小数.
 
Sample Input
2
5
1 1 4 2
1 3 3 7
2 1.5 5 4.5
3.5 1.25 7.5 4
6 3 10 7
3
0 0 1 1
1 0 2 1
2 0 3 1
 
Sample Output
7.63
0.00
 
Author
Ignatius.L & weigang Lee
 

 //#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define clr(x) memset(x,0,sizeof(x))
#define MAXN 10010
using namespace std;
struct edg
{
double l,r,y;
int d;
}edge[MAXN];
struct seg
{
int l,r,cov;
double len1,len2;
}segt[MAXN<<];
int cnt;
double x[MAXN];
bool cmp(edg a,edg b)
{
if(a.y==b.y) return a.d>b.d;
return a.y<b.y;
}
double max(double a,double b)
{
return a>b?a:b;
}
void init(int i,int l,int r)
{
segt[i]=(seg){l,r,,,};
if(l==r)
return ;
int mid=(l+r)>>;
init(i<<,l,mid);
init(i<<|,mid+,r);
return ;
}
void pushup(int i)
{
if(segt[i].cov>=)
{
segt[i].len2=segt[i].len1=x[segt[i].r+]-x[segt[i].l];
}
else if(segt[i].cov==)
{
segt[i].len1=x[segt[i].r+]-x[segt[i].l];
if(segt[i].l==segt[i].r)
segt[i].len2=;
else
segt[i].len2=max(segt[i<<].len1,segt[i<<].len2)+max(segt[i<<|].len1,segt[i<<|].len2);
}
else
{
if(segt[i].l==segt[i].r)
{
segt[i].len1=segt[i].len2=;
}
else
{
segt[i].len2=segt[i<<].len2+segt[i<<|].len2;
segt[i].len1=segt[i<<].len1+segt[i<<|].len1;
}
}
return ;
}
void update(int i,int l,int r,int value)
{
if(segt[i].l>=l && segt[i].r<=r)
{
segt[i].cov+=value;
pushup(i);
return ;
}
int mid=(segt[i].l+segt[i].r)>>;
if(mid>=r)
{
update(i<<,l,r,value);
}
else if(mid<l)
{
update(i<<|,l,r,value);
}
else
{
update(i<<,l,r,value);
update(i<<|,l,r,value);
}
pushup(i);
return ;
}
int main()
{
int T,n,m,k,u,v;
double x1,x2,y1,y2,ans,l,r;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
cnt=;
ans=;
for(int i=;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
edge[++cnt]=(edg){x1,x2,y1,};
x[cnt]=x1;
edge[++cnt]=(edg){x1,x2,y2,-};
x[cnt]=x2;
}
n<<=;
sort(x+,x+n+);
m=unique(x+,x+n+)-x-;
sort(edge+,edge+n+,cmp);
init(,,m);
for(int i=;i<n;i++)
if(edge[i].r>edge[i].l)
{
l=lower_bound(x+,x+m+,edge[i].l)-x;
r=lower_bound(x+,x+m+,edge[i].r)-x;
update(,l,r-,edge[i].d);
ans+=segt[].len2*(edge[i+].y-edge[i].y);
}
printf("%0.2lf\n",ans);
}
return ;
}

hdu 1542 [POJ 1151] 区间面积并

Atlantis

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 12537    Accepted Submission(s): 5257

Problem Description
There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.
 
Input
The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

The input file is terminated by a line containing a single 0. Don’t process it.

 
Output
For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

Output a blank line after each test case.

 
Sample Input
2
10 10 20 20
15 15 25 25.5
0
 
Sample Output
Test case #1
Total explored area: 180.00
 
Source
 

卡格式,不说了,都是泪。
 //#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define clr(x) memset(x,0,sizeof(x))
#define MAXN 10010
using namespace std;
struct edg
{
double l,r,y;
int d;
}edge[MAXN];
struct seg
{
int l,r,cov;
double len;
}segt[MAXN<<];
int cnt;
double x[MAXN];
bool cmp(edg a,edg b)
{
if(a.y==b.y) return a.d>b.d;
return a.y<b.y;
}
double max(double a,double b)
{
return a>b?a:b;
}
void init(int i,int l,int r)
{
segt[i]=(seg){l,r,,};
if(l==r)
return ;
int mid=(l+r)>>;
init(i<<,l,mid);
init(i<<|,mid+,r);
return ;
}
void pushup(int i)
{
if(segt[i].cov)
{
segt[i].len=x[segt[i].r+]-x[segt[i].l];
}
else if(segt[i].l==segt[i].r)
{
segt[i].len=;
}
else
{
segt[i].len=segt[i<<].len+segt[i<<|].len;
}
return ;
}
void update(int i,int l,int r,int value)
{
if(segt[i].l>=l && segt[i].r<=r)
{
segt[i].cov+=value;
pushup(i);
return ;
}
int mid=(segt[i].l+segt[i].r)>>;
if(mid>=r)
{
update(i<<,l,r,value);
}
else if(mid<l)
{
update(i<<|,l,r,value);
}
else
{
update(i<<,l,r,value);
update(i<<|,l,r,value);
}
pushup(i);
return ;
}
int main()
{
int T,n,m,k,u,v;
double x1,x2,y1,y2,ans,l,r;
int kase=;
while(scanf("%d",&n) && n!=)
{
printf("Test case #%d\n",++kase);
cnt=;
ans=;
for(int i=;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
edge[++cnt]=(edg){x1,x2,y1,};
x[cnt]=x1;
edge[++cnt]=(edg){x1,x2,y2,-};
x[cnt]=x2;
}
n<<=;
sort(x+,x+n+);
m=unique(x+,x+n+)-x-;
sort(edge+,edge+n+,cmp);
init(,,m);
for(int i=;i<n;i++)
if(edge[i].r>edge[i].l)
{
l=lower_bound(x+,x+m+,edge[i].l)-x;
r=lower_bound(x+,x+m+,edge[i].r)-x;
update(,l,r-,edge[i].d);
ans+=segt[].len*(edge[i+].y-edge[i].y);
}
printf("Total explored area: %0.2lf\n",ans);
printf("\n");
}
return ;
}

扫描线三巨头 hdu1928&&hdu 1255 && hdu 1542 [POJ 1151]的更多相关文章

  1. hdu 1542&&poj 1151 Atlantis[线段树+扫描线求矩形面积的并]

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  2. hdu 1542 & & poj 1151

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  3. HDU 1542/POJ 1151 Atlantis (scaning line + segment tree)

    A template of discretization + scaning line + segment tree. It's easy to understand, but a little di ...

  4. 线段树扫描线(一、Atlantis HDU - 1542(覆盖面积) 二、覆盖的面积 HDU - 1255(重叠两次的面积))

    扫描线求周长: hdu1828 Picture(线段树+扫描线+矩形周长) 参考链接:https://blog.csdn.net/konghhhhh/java/article/details/7823 ...

  5. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  6. HDU 1255 覆盖的面积(线段树+扫描线)

    题目地址:HDU 1255 这题跟面积并的方法非常像,仅仅只是须要再加一个变量. 刚開始我以为直接用那个变量即可,仅仅只是推断是否大于0改成推断是否大于1.可是后来发现了个问题,由于这个没有下放,没延 ...

  7. hdu 1255 覆盖的面积(线段树 面积 交) (待整理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.   In ...

  8. hdu 1255 覆盖的面积(求覆盖至少两次以上的面积)

    了校赛,还有什么途径可以申请加入ACM校队?  覆盖的面积 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  9. “三巨头”有变化,BAT还能走多久?

    在腾讯市值超越阿里巴巴后,市场分析多数认为,当年的BAT“三巨头”时代已经彻底结束,进入了“双寡头”时代了 从对外投资来看,BAT不同的投资逻辑可以推测其战略方向 撰文/梁云风 时评员,关注财经与互联 ...

随机推荐

  1. luaj luaoc 回调函数传递的一些小总结

    问题场景:我们的游戏在支付时,由于第三方支付比较费时,可能在支付的过程中,我们lua写的cocos2dx项目会断网,我们的游戏有自动重连的机制.我就想,如果断线好了以后,支付完成了,那在断网之前传入的 ...

  2. POJ 3279 Fliptile ( 开关问题)

    题目链接 Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give ...

  3. 在前端发起ajax遇到问题

    1.请注意设置datatype的类型. 如下图:

  4. Spring的BeanFactory体系结构(一)

    本文使用的代码是: Spring 3.0 接 触Spring也有很长一段时间了.但是,每次都是直接使用Spring直接提供的API,时间久了,自然也会想探索Spring里面的奥秘.今天上 午,整理出了 ...

  5. 2017-2018-1 20179205《Linux内核原理与设计》第八周作业

    <Linux内核原理与设计>第八周作业 视频学习及操作分析 预处理.编译.链接和目标文件的格式 可执行程序是怎么来的? 以C语言为例,经过编译器预处理.编译成汇编代码.汇编器编译成目标代码 ...

  6. mssql注入中的储存用法删除与恢复

    删除: use master exec sp_dropextendedproc 'xp_cmdshell' exec sp_dropextendedproc 'xp_enumgroups' exec ...

  7. nginx路由文件配置

    nginx中文文档 Nginx 的请求处理有多个阶段,比如说rewrite.access.content等等,不同的配置字段属于不同的配置阶段,不同阶段的先后执行顺序不一样,例如rewrite在con ...

  8. tenda t402 家庭版 有线路由器

    使用快速向导: adsl(拨号)+用户名+密码 路由器后DMZ主机设置简单图解:http://wenku.baidu.com/view/94b9f0768e9951e79b8927ce.html  可 ...

  9. Percona XtraDB Cluster(PXC)原理

    Percona XtraDB Cluster(PXC)原理 介绍: PXC曾经属于一套近乎最完美的mysql高可用集群解决方案(现mgr总体上要优于pxc),相比传统的基于主从复制模式的集群架构MHA ...

  10. Redis 集群使用(2)

    Redis包含三种集群策略: 主从复制 哨兵模式 redis cluster 主从复制 在主从复制中,数据分为两类:主数据库(master)和 从数据库(slave).其中主从复制有如下特点: 主数据 ...