Problem Statement

Takahashi and Aoki are playing a stone-taking game. Initially, there are N piles of stones, and the i-th pile contains Ai stones and has an associated integer Ki.

Starting from Takahashi, Takahashi and Aoki take alternate turns to perform the following operation:

  • Choose a pile. If the i-th pile is selected and there are X stones left in the pile, remove some number of stones between 1 and floor(XKi) (inclusive) from the pile.

The player who first becomes unable to perform the operation loses the game. Assuming that both players play optimally, determine the winner of the game. Here, floor(x) represents the largest integer not greater than x.

Constraints

  • 1≤N≤200
  • 1≤Ai,Ki≤109
  • All input values are integers.

Input

Input is given from Standard Input in the following format:

N
A1 K1
:
AN KN

Output

If Takahashi will win, print Takahashi; if Aoki will win, print Aoki.

Sample Input 1

2
5 2
3 3

Sample Output 1

Aoki

Initially, from the first pile at most floor(5⁄2)=2 stones can be removed at a time, and from the second pile at most floor(3⁄3)=1 stone can be removed at a time.

  • If Takahashi first takes two stones from the first pile, from the first pile at most floor(3⁄2)=1 stone can now be removed at a time, and from the second pile at most floor(3⁄3)=1 stone can be removed at a time.
  • Then, if Aoki takes one stone from the second pile, from the first pile at most floor(3⁄2)=1 stone can be removed at a time, and from the second pile no more stones can be removed (since floor(2⁄3)=0).
  • Then, if Takahashi takes one stone from the first pile, from the first pile at most floor(2⁄2)=1 stone can now be removed at a time, and from the second pile no more stones can be removed.
  • Then, if Aoki takes one stone from the first pile, from the first pile at most floor(1⁄2)=0 stones can now be removed at a time, and from the second pile no more stones can be removed.

No more operation can be performed, thus Aoki wins. If Takahashi plays differently, Aoki can also win by play accordingly.

Sample Input 2

3
3 2
4 3
5 1

Sample Output 2

Takahashi

Sample Input 3

3
28 3
16 4
19 2

Sample Output 3

Aoki

Sample Input 4

4
3141 59
26535 897
93 23
8462 64

Sample Output 4

Takahashi

    这种题只能打表找规律啊QWQ
把k<=10,n<=30的sg函数打表出来,找了找规律,发现:
sg(x) = ( x%k==0 ? x/k : sg(x - x/k - 1) ) 当k比较小的时候,显然 x - x/k -1 的减小速率是非常快的,大致和k同阶(可能略大一点);
当k比较大的时候,可以发现在减小的过程中很多x/k都是一样的,并且一样的都是连续的,所以我们对于 x/k == i 可以计算出 x'/k 第一次 <i 的x'是哪个,因为x/k没减小1x减小的幅度大致是和k同阶的,所以总的复杂度就大致和 x/k同阶。。 因为不管k比较大还是比较小我们都可以连续一段处理,所以算一个sg函数的复杂度就是 min ( k , x/k ),大概是1e5级别的。。。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=205; int n,A,k,Xor; inline int Get(int x){
if(x<k) return 0;
if(x%k==0) return x/k;
int der=x/k+1,lef=x%k;
if(der>=lef) return Get(x-der);
else return Get(x-lef/der*der);
} int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&A,&k);
Xor^=Get(A);
} if(Xor) puts("Takahashi");
else puts("Aoki"); return 0;
}

AtCoder - 3939 Strange Nim的更多相关文章

  1. AtCoder练习

    1. 3721 Smuggling Marbles 大意: 给定$n+1$节点树, $0$为根节点, 初始在一些节点放一个石子, 然后按顺序进行如下操作. 若$0$节点有石子, 则移入盒子 所有石子移 ...

  2. 【AtCoder】ARC091

    C - Flip,Flip, and Flip...... 只有一个这一个是反面 只有一行那么除了两边以外都是反面 否则输出\((N - 2)*(M - 2)\) #include <bits/ ...

  3. sg函数小结

    sg函数小结 sg函数是处理博弈问题的重要工具. 我们知道sg(x)=mex{sg(j)|x能到达状态j} sg(x)=0时代表后手赢,否则先手赢. 对于一个问题,如果某些子问题是相互独立的,我们就可 ...

  4. Atcoder #017 agc017 D.Game on Tree 树上NIM 博弈

    LINK 题意:树上NIM的模板题,给出一颗树,现有操作删去端点不为根节点的边,其另一端节点都将被移除,不能取者为败 思路:一看就是个NIM博弈题,只是搬到树上进行,树上DFS进行异或 记得#014D ...

  5. Atcoder #014 agc014_D 树形DP+nim变形

    LINK 题意:两人在一颗树上做游戏,先手可以将树上一个节点染白,后手染黑,到最后时,所有与黑色相邻的白色同时变黑.如果还存在白色,先手胜,否则后手胜. 思路:首先不考虑树上,单独为链时,不管找规律也 ...

  6. LeetCode 292. Nim Game

    Problem: You are playing the following Nim Game with your friend: There to stones. The one who remov ...

  7. Atcoder Grand-014 Writeup

    A - Cookie Exchanges 题面 Takahashi, Aoki and Snuke love cookies. They have A, B and C cookies, respec ...

  8. AtCoder Grand Contest 014

    AtCoder Grand Contest 014 A - Cookie Exchanges 有三个人,分别有\(A,B,C\)块饼干,每次每个人都会把自己的饼干分成相等的两份然后给其他两个人.当其中 ...

  9. AtCoder Beginner Contest 172 题解

    AtCoder Beginner Contest 172 题解 目录 AtCoder Beginner Contest 172 题解 A - Calc B - Minor Change C - Tsu ...

随机推荐

  1. Creating a new dynamic form project, business modeling.

    The domain logic is like there are a bunch of objects, as well as a lot of configurations, according ...

  2. Java 对象排序详解

    很难想象有Java开发人员不曾使用过Collection框架.在Collection框架中,主要使用的类是来自List接口中的ArrayList,以及来自Set接口的HashSet.TreeSet,我 ...

  3. Spring注解@Resource和@Autowired区别对比、spring扫描的默认bean的Id、程序获取spring容器对象

    -------------------------注解扫面的bean的ID问题-------------------------- 0.前提需要明白注解扫描出来的bean的id默认是类名首字母小写,当 ...

  4. C++转换构造函数和隐式转换函数 ~ 转载

    原文地址: C++转换构造函数和隐式转换函数 用转换构造函数可以将一个指定类型的数据转换为类的对象.但是不能反过来将一个类的对象转换为一个其他类型的数据(例如将一个Complex类对象转换成doubl ...

  5. 2017-2018-1 20179205《Linux内核原理与设计》第六周作业

    <Linux内核原理与设计> 视频学习及操作 给MenuOS增加time和time-asm命令的方法: 1.更新menu代码到最新版 rm menu -rf //强制删除menu, rm ...

  6. Java多态的实现原理

    1.多态的定义:指允许不同类的对象,对同一消息作出响应: 即同一消息可以根据发送对象的不同采用多种不同的行为方式: 2.多态的实现技术:动态绑定: 指在执行期间判断所引用对象的实际类型,根据其实际的类 ...

  7. rabbitmq之配置文件详解(二)

    前言 前面介绍了erlang环境的安装和rabbitmq环境安装,接下来对rabbitmq详细配置: 设置配置文件 rabbitmq的系统配置文件一般是rabbitmq.conf,可以登录后台查看它的 ...

  8. 基于Django Form源码开发自定义Form组件

    import copy import re class ValidateError(Exception): def __init__(self, detail): self.detail = deta ...

  9. python基础===新式类与经典类

    首先: Python 2.x中默认都是经典类,只有显式继承了object才是新式类 Python 3.x中默认都是新式类,不必显式的继承object 这两种类的区别: 新式类重定义的方法更多,当然这不 ...

  10. 2017多校第6场 HDU 6097 Mindis 计算几何,圆的反演

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6097 题意:有一个圆心在原点的圆,给定圆的半径,给定P.Q两点坐标(PO=QO,P.Q不在圆外),取圆 ...