BZOJ1430:运用Cayley定理解决树的形态统计问题

由Prufer编码可以引申出来一个定理:Cayley

内容是不同的n结点标号的树的数量为n^(n-2)

换一种说法就是一棵无根树,当知道结点总数的时候,其最多可能有n^(n-2)种形态

这只是形态而已

对于BZOJ1430这道题

题目的打架关系可以用无根树来描述

除了形态之外,还要考虑打架的顺序,一共(n-1)!种

乘起来即可

  1. #include<cstdio>
  2. const int mod=;
  3. int n;
  4. long long ans=;
  5. int main()
  6. {
  7. scanf("%d",&n);
  8. for(int i=;i<=n-;i++)
  9. ans=(ans*n)%mod;
  10. for(int i=;i<=n-;i++)
  11. ans=(ans*i)%mod;
  12. printf("%lld",ans);
  13. return ;
  14. }

图论:Prufer编码-Cayley定理的更多相关文章

  1. prufer编码 cayley定理

    背景(在codeforces 917D 报废后,看题解时听闻了这两个玩意儿.实际上917D与之“木有关西”,也可以认为是利用了prufer的一些思路.) 一棵标号树的Pufer编码规则如下:找到标号最 ...

  2. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  3. luogu P4430 小猴打架(prufer编码与Cayley定理)

    题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...

  4. 图论:Prufer编码

    BZOJ1211:使用prufer编码解决限定结点度数的树的计数问题 首先学习一下prufer编码是干什么用的 prufer编码可以与无根树形成一一对应的关系 一种无根树就对应了一种prufer编码 ...

  5. 树的Prufer 编码和最小生成树计数

      Prufer数列 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它可以通过简单的迭代方 ...

  6. 【转】prufer编码

    既然有人提到了,就顺便学习一下吧,来源:http://greatkongxin.blog.163.com/blog/static/170097125201172483025666/ 一个含有n个点的完 ...

  7. Prüfer序列和cayley定理

    参考资料: 1.matrix67 <经典证明:Prüfer编码与Cayley公式> 2.百度百科 3.Forget_forever prufer序列总结 4.维基百科 5.dirge的学习 ...

  8. 学习笔记:Prufer 编码

    Prufer 编码可以将无根树与序列之间进行转化. 一个 \(n\) 个点.区分编号的无向图 和 Prufer 序列一定是一一对应的,下面会给出映射方式. 借此可以证明 Cayley 定理: \(n\ ...

  9. 树的计数 Prufer序列+Cayley公式

    先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后 ...

随机推荐

  1. HADOOP (十一).安装hbase

    下载安装包并解压设置hbase环境变量配置hbase-site.xml启动hbase检测hbase启动情况测试hbase shell 下载安装包并解压 https://mirrors.tuna.tsi ...

  2. 自学系列--git的基础简介

    上学期第一次接触git,感觉挺难的,我们都知道这个非常重要,自己对git也自学了一段时间,下面这是对自学内容的总结,拿出来和大家一块交流一下,让我们一起成长吧! 一 git简介 Git是一个开源的分布 ...

  3. Mininet实验 MAC地址学习分析

    拓扑图 学习过程分析 首先交换机A和交换机B一开始的MAC地址表都是空的. 此时主机11向主机33发送一个数据帧. 数据帧会先到达交换机A,交换机A会获得主机11的MAC地址和端口号.(此时交换机A的 ...

  4. 2-c语言作业1

    #include<stdio.h> #include<math.h> int main(void) { int money,year; double rate,sun; pri ...

  5. #Leetcode# 951. Flip Equivalent Binary Trees

    https://leetcode.com/problems/flip-equivalent-binary-trees/ For a binary tree T, we can define a fli ...

  6. 多线程Worker初尝试

    多线程这个概念,不知道听了多少遍.但是真滴没有去实操过. 前几天看视频听到作者说道关注技术本身,而不是总写业务代码.这几天依然思考着这个问题.于是从头开始重现了html文件的堵塞问题,重现了html文 ...

  7. Mybatis笔记二

    一对一查询 案例:查询所有订单信息,订单信息中显示下单人信息. 注意:因为一个订单信息只会是一个人下的订单,所以从查询订单信息出发关联查询用户信息为一对一查询.如果从用户信息出发查询用户下的订单信息则 ...

  8. stm32f4xx标准外设固件库

    STM32F4的相关资料:http://www.stmcu.org/document/list/index/category-523 一.标准固件库简介 本文下载的是STM32F4xx_DSP_Std ...

  9. BZOJ 1305 跳舞(二分+网络流)

    无法直接构造最大流来解决这个问题,因为题目要求每首舞曲都需要n对男女进行跳舞. 答案又满足单调性,这启发我们二分答案,判断是否满流验证答案. 假设舞曲数目为x时满足条件,那么每个男生和女生都需要跳x次 ...

  10. 【bzoj4580】[Usaco2016 Open]248 区间dp

    题目描述 Bessie likes downloading games to play on her cell phone, even though she does find the small t ...