题目链接


题解

题目大意

一个序列,支持区间开方与求和操作。

算法:线段树实现开方修改与区间求和

分析

  • 显然,这道题的求和操作可以用线段树来维护
  • 但是如何来实现区间开方呢
  • 大家有没有这样的经历:玩计算器的时候,把一个数疯狂的按开方,最后总会变成 \(1\),之后在怎样开方也是 \(1\) (\(\sqrt1=1\))
  • 同样的,\(\sqrt0=0\)
  • 所以,只要一段区间里的所有数全都 \(\leq 1\) 了,便可以不去修改它

实现

  • 线段树维护区间和 \(sum\) 与最大值 \(Max\)
  • 在修改过程中,只去修改 \(Max > 1\) 的区间
  • 到了叶子节点对\(sum\)和\(Max\)进行开方就行了

复杂度

  • 每个数 \(\leq 10 ^ {12}\),所以至多开方\(6\)次便可以得到\(1\)
  • 每次操作是 \(\log n\)的,总复杂度\(O(n \log n)\)

注意事项

  • 请使用long long
  • 可能 \(l > r\)(把我坑了)

代码:

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <cstdio> using namespace std;
typedef long long LL;
const int MAXN = 100100; int n, m;
int cnt;
LL a[MAXN];
struct node
{
int left, right;
LL s, Max;
node *ch[2];
}pool[MAXN << 2], *root; inline void pushup(node *r)
{
r->s = r->ch[0]->s + r->ch[1]->s;
r->Max = max(r->ch[0]->Max, r->ch[1]->Max);
} inline void Build_Tree(node *r, int left, int right)
{
r->left = left;
r->right = right;
if(left == right)
{
r->s = r->Max = a[left];
return ;
}
int mid = (left + right) / 2;
node *lson = &pool[++cnt];
node *rson = &pool[++cnt];
r->ch[0] = lson;
r->ch[1] = rson;
Build_Tree(lson, left, mid);
Build_Tree(rson, mid + 1, right);
pushup(r);
} inline void change(node *r, int left, int right)
{
if(r->left == r->right)
{
r->s = sqrt(r->s);
r->Max = sqrt(r->Max);
return ;
} int mid = (r->left +r-> right) / 2;
if(left <= mid && r->ch[0]->Max > 1) change(r->ch[0], left, right);
if(mid < right && r->ch[1]->Max > 1) change(r->ch[1], left, right);
pushup(r);
} inline LL query(node *r, int left, int right)
{
if(r->left == left && r->right == right)
return r->s;
if(r->ch[0]->right >= right) return query(r->ch[0], left, right);
else if(r->ch[1]->left <= left) return query(r->ch[1], left, right);
else
return query(r->ch[0], left, r->ch[0]->right) +
query(r->ch[1], r->ch[1]->left, right);
}
int main()
{
scanf("%d", &n);
root = &pool[0];
for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
scanf("%d", &m);
Build_Tree(root, 1, n);
for(int i = 1; i <= m; i++)
{
int opt, l, r;
scanf("%d%d%d", &opt, &l, &r);
if(l > r) swap(l, r);
if(opt) printf("%lld\n", query(root, l, r));
else change(root, l, r);
}
return 0;
}

题解【luoguP4145 上帝造题的七分钟2(花神游历各国)】的更多相关文章

  1. 题解 洛谷 P4145 【上帝造题的七分钟2 / 花神游历各国】

    题目 上帝造题的七分钟2 / 花神游历各国 题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. ...

  2. GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 (线段树)

    GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 GSS4 - Can you answer these qu ...

  3. 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  4. 洛谷P4145 上帝造题的七分钟2/花神游历各国 [树状数组,并查集]

    题目传送门 题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是 ...

  5. [bzoj3038/3211]上帝造题的七分钟2/花神游历各国_线段树

    上帝造题的七分钟2 bzoj-3038 题目大意:给定一个序列,支持:区间开方:查询区间和. 注释:$1\le n\le 10^5$,$1\le val[i] \le 10^{12}$. 想法:这题还 ...

  6. 洛谷P4145——上帝造题的七分钟2 / 花神游历各国

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  7. 【luogu4145】上帝造题的七分钟2 / 花神游历各国--区间开根-线段树

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  8. 【题解】 Luogu P4145 上帝造题的七分钟2 / 花神游历各国

    原题传送门 这道题实际和GSS4是一样的,只是输入方式有点区别 GSS4传送门 这道题暴力就能过qaq(这里暴力指线段树) 数据比较水 开方修改在线段树中枚举叶节点sqrt 查询区间和线段树基本操作 ...

  9. 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国

    SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...

  10. 洛谷 P4145 上帝造题的七分钟2 / 花神游历各国

    洛谷 这题就是区间开根号,区间求和.我们可以分块做. 我们记布尔数组vis[i]表示第i块中元素是否全部为1. 因为显然当一个块中元素全部为1时,并不需要对它进行根号操作. 我们每个块暴力开根号,因为 ...

随机推荐

  1. LogisticRegression Algorithm——机器学习(西瓜书)读书笔记

    import numpy as np from sklearn.datasets import load_breast_cancer import sklearn.linear_model from ...

  2. 【转载】Android 内存溢出如何发生的。

    [转载]Android 内存溢出如何发生的. 且谈Android内存溢出 前言 关于android的内存溢出在创新文档库中也有不少,网络上也有很多这方面的资料.所以这遍文章不算是正真意义上的创新,仅仅 ...

  3. 20届的阿里 头条 网易 滴滴 百度 小米等Java面经

    转载连接 个人博客:junxuelian.cn 总结:个人感觉回答面试官问题不必太官方和书面化,腾讯sng招实习被发现照着百度百科念.结果可想而知.用自己的话和理解去回答就好.可能应届生会抱怨设计题, ...

  4. 实用的ES6特性

    1. 函数参数默认值 不使用ES6 为函数的参数设置默认值: function foo(height, color) { var height = height || 50; var color = ...

  5. Notes of the scrum meeting(12.10)

    meeting time:20:00~20:30p.m.,December 10th,2013 meeting place:20号公寓前 attendees: 顾育豪                  ...

  6. unordered_map(hash_map)和map的比较

    测试代码: #include <iostream> using namespace std; #include <string> #include <windows.h& ...

  7. c#笔记整理 关于继承与多态等

    [ 塔 · 第 二 条 约 定 ] c#面向对象基础 整理private.protected.public.abstract等的异同 public 公有访问.不受任何限制. private 私有访问. ...

  8. JAVA mysql数据库 配置

    mysql 版本 5.7 数据库连接版本 <!--MySql--><dependency> <groupId>mysql</groupId> <a ...

  9. C#命名参数

    文章:史上最全的ASP.NET MVC路由配置,以后RouteConfig再弄不懂神仙都难救你啦~ 命名参数规范+匿名对象 routes.MapRoute(name: "Default&qu ...

  10. Qt-排序

    1.要求传入起始指针,总长度,单元素空间占用大小(sizeof(A[i])),判断函数. 判断函数参数类型为const void *,使用需要在函数内自行转换为对应类型, 返回值为整数型,升序排序时正 ...