【题解】CF#855 G-Harry Vs Voldemort
个人感觉挺有意思的,然而被颜神D无聊惹(~ ̄▽ ̄)~
这题我们可以首先试图去统计以每一个点作为 w 点所能对答案造成的贡献是多少。不难发现,当且仅当 u 和 v 都在 w 所在边双的一侧的时候不能构成一个合法的三元组,因为它们要到达 w 均需经过一条共同的割边。那么因为原图是一棵树,所以我们连接两个点的时候就是在把这两个点所在的边双一直到根所在的边双都合并为一个。
考虑如何在合并答案的时候计算出答案的变化。若我们合并的是 S,T 这两个集合,我们可以先减去由 S 和 T 中的点作为 w 点时对答案造成的贡献。1.u 和 v 均为 w 所在边双中的点,这个直接用边双大小统计就可以了;2.一个在边双外部,一个在边双内部。这个也可以直接用边双大小进行统计。
比较难想到的是如何统计两个点都在边双外部的情况(在边双的两侧)。这个直接统计并不是很方便,但是不难发现如果统计在点双外部且在两侧的情况是很多的,而在点双外部且在同一侧的情况则单一很多。全部的选择就是点双外部的点钟随便选两个,我们可以把在同一侧的情况减去得到合法的解。维护数组 w[u] 表示 u 联通块中的一个点所能匹配到的同一侧的两个点有多少种方案。非法的情况即为 w[u] * s[u] (u 联通块的大小)。合并的时候 w 数组怎么合并呢?令 u 为 v 的父亲,则 w[u] + w[v] 这样统计的话会把 v 所在的子树内的点对 & v 点外部(父亲子树)的点对统计两次。减去就好啦。
#include <bits/stdc++.h>
using namespace std;
#define maxn 1000000
#define int long long
int n, ans, s[maxn], w[maxn], dep[maxn];
int size[maxn], fa[maxn], f[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, to[maxn], last[maxn], head[maxn];
edge() { cnp = ; }
void add(int u, int v)
{
to[cnp] = v, last[cnp] = head[u], head[u] = cnp ++;
to[cnp] = u, last[cnp] = head[v], head[v] = cnp ++;
}
}E1; void dfs(int u)
{
size[u] = ; dep[u] = dep[fa[u]] + ;
for(int i = E1.head[u]; i; i = E1.last[i])
{
int v = E1.to[i];
if(v == fa[u]) continue;
fa[v] = u; dfs(v);
size[u] += size[v]; w[u] += size[v] * size[v];
}
w[u] += (n - size[u]) * (n - size[u]);
ans -= w[u];
} int Cal(int u) { return max(s[u] * (s[u] - ) * (s[u] - ), 0LL); }
int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
void merge(int u, int v)
{
ans -= (n - s[u]) * (n - s[u]) * s[u] - w[u] * s[u];
ans -= (n - s[v]) * (n - s[v]) * s[v] - w[v] * s[v];
ans -= (n - s[u]) * s[u] * (s[u] - ) * ;
ans -= (n - s[v]) * s[v] * (s[v] - ) * ;
ans -= Cal(u) + Cal(v); f[v] = u, s[u] += s[v]; w[u] += w[v] - size[v] * size[v] - (n - size[v]) * (n - size[v]);
ans += (n - s[u]) * (n - s[u]) * s[u] - w[u] * s[u] + Cal(u);
ans += (n - s[u]) * s[u] * (s[u] - ) * ;
} signed main()
{
n = read();
for(int i = ; i < n; i ++)
{
int u = read(), v = read();
E1.add(u, v);
}
ans = n * (n - ) * (n - ); dfs();
for(int i = ; i <= n; i ++) f[i] = i, s[i] = ;
int q = read();
printf("%lld\n", ans);
for(int i = ; i <= q; i ++)
{
int u = read(), v = read();
u = find(u), v = find(v);
while(u != v)
{
if(dep[u] < dep[v]) swap(u, v);
int fu = find(fa[u]);
merge(fu, u); u = fu;
}
printf("%lld\n", ans);
}
return ;
}
【题解】CF#855 G-Harry Vs Voldemort的更多相关文章
- [题解向] CF#Global Round 1の题解(A $\to$ G)
这里是总链接\(Link\). \(A\) 题意:求\(\sum_{i=1}^{k} a_i\times b^{k-i}\)的奇偶性, \(k = \Theta(n \log n)\) --其实很容易 ...
- 竞赛题解 - CF Round #524 Div.2
CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...
- 题解 CF 1372 B
题目 传送门 题意 给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b ...
- 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)
还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...
- CF 1051 G. Distinctification
G. Distinctification 链接 分析: 线段树合并 + 并查集. 最后操作完后a连续递增的一段,b一定是递减的.最后的答案是$\sum (a_{new}-a_{odd}) \times ...
- CF 724 G. Xor-matic Number of the Graph
G. Xor-matic Number of the Graph 链接 题意: 给定一个无向图,一个interesting的三元环(u,v,s)满足,从u到v的路径上的异或和等于s,三元环的权值为s, ...
- CF 1093 G. Multidimensional Queries
G. Multidimensional Queries 链接 分析: 考虑如何去掉绝对值符号. $\sum \limits_{i = 1}^{k} |a_{x, i} - a_{y, i}|$,由于k ...
- 【codeforces】【比赛题解】#855 Codefest 17
神秘比赛,以<哈利波特>为主题……有点难. C题我熬夜切终于是写出来了,可惜比赛结束了,气啊. 比赛链接:点我. [A]汤姆·里德尔的日记 题意: 哈利波特正在摧毁神秘人的分灵体(魂器). ...
- 竞赛题解 - [CF 1080D]Olya and magical square
Olya and magical square - 竞赛题解 借鉴了一下神犇tly的博客QwQ(还是打一下广告) 终于弄懂了 Codeforces 传送门 『题目』(直接上翻译了) 给一个边长为 \( ...
随机推荐
- 西安Uber优步司机奖励政策(12月21日-12.27日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- HDU 5972 Regular Number
Regular Number http://acm.hdu.edu.cn/showproblem.php?pid=5972 题意: 给定一个字符串,求多少子串满足,子串的第i位,只能是给定的数(小于等 ...
- Python:PyCharm如何导入模块
- 4、Java并发编程:synchronized
Java并发编程:synchronized 虽然多线程编程极大地提高了效率,但是也会带来一定的隐患.比如说两个线程同时往一个数据库表中插入不重复的数据,就可能会导致数据库中插入了相同的数据.今天我们就 ...
- Spring的定时任务(任务调度)<task:scheduled-tasks>
Spring内部有一个task是Spring自带的一个设定时间自动任务调度,提供了两种方式进行配置,一种是注解的方式,而另外一种就是XML配置方式了.注解方式比较简洁,XML配置方式相对而言有些繁琐, ...
- 适配iPhoneX、iPhoneXs、iPhoneXs Max、iPhoneXr 屏幕尺寸及安全区域
此篇文章是对上一篇文章(http://www.ifiero.com/index.php/archives/611)的进一步补充,主要说明如何适配Apple的最新三款手机iPhoneXs.iPhoneX ...
- 254. Drop Eggs【LintCode java】
Description There is a building of n floors. If an egg drops from the k th floor or above, it will b ...
- 安卓客户端浏览器ajax注意
这两天被一个bug搞疯了,就是公司安卓app上我负责的网页死活不进ajax,一开始我用的是post方式提交的,但是参数那一栏没写,直接把参数写在url上了,后来老大跟我说post不写参数会出问题,后来 ...
- OSS文件上传及OSS与ODPS之间数据连通
场景描述 有这样一种场景,用户在自建服务器上存有一定数量级的CSV格式业务数据,某一天用户了解到阿里云的OSS服务存储性价比高(嘿嘿,颜值高),于是想将CSV数据迁移到云上OSS中,并且 ...
- jupyter notebook 使用cmd命令窗口打开
第一步:将文件路径改为你需要使用文件所在的路径 第二部: jupyter notebook