RDD是什么?

RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD。从编程的角度来看,

RDD可以简单看成是一个数组。和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理。因此,spark应用程序所做的无非是把需要处理的数据转换成RDD,然后对RDD进行一系列的变换和操作从而得到结果。本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API。

如何创建RDD?

RDD可以从普通数组创建出来,也可以从文件系统或者HDFS中的文件创建出来。

方式(一):举例:从普通数组创建RDD,里面包含了1到9这9个数字,他们分别在3个分区中。

scala>val a=sc.parallelize(1 to 9, 3)
a:org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:12

方式(二):举例:读取文件README.md来创建RDD,文件中的每一行就是RDD中的一个元素

scala> val b = sc.textFile("README.md")
b: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at <console>:12

Text file RDDs的创建可以使用SparkContext的textFile方法。该方法接受一个文件的URI地址(或者是机器上的一个本地路径,或者是一个hdfs://,等URI)作为参数,并读取文件的一行数据,放入集合中。下面是一个调用例子:

scala>val distFile = sc.textFile("data.txt")
distFile:RDD[String]= MappedRDD@1D4CEE08

一旦创建完成,就可以在distFile上执行数据集操作。例如:想要对所有行的长度进行求和,我们就可以通过如下的map和reduce操作来完成:

distFile.map(s =>s.length).reduce((a+b) =>a+b)

虽然还有别的方式可以创建RDD,但在本文中我们主要使用上述两种方式来创建RDD以说明RDD的API.

map

map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。

举例:

scala>val a = sc.paralleize(1 to 9, 3)
scala>val b = a.map(x=>x*2)
scala>a.collect
res10:Array[Int] = Array(1,2,3,4,5,6,7,8,9)
scala>b.collect
res11:Array[Int] = Array(2,4,6,8,10,12,14,16,18)

上述例子中把原RDD中每个元素都乘以2来产生一个新的RDD。

mapPartitions

mapPartitions是map的一个变种。map的输入函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区,也就是把每个分区中的内容作为整体来处理的。

它的函数定义为:

def mapPartitions[U:ClassTag](f:Iterator[T] =>Iterator[U],preserversPartitioning:Boolean=false:RDD[U])

f即为输入函数,它处理每个分区里面的内容。每个分区中的内容将以Iterator[T]传递给输入函数f,f的输出结果是Iterator[U]。最终的RDD由所有分区经过输入函数处理后的结果合并起来的。

举例:

scala>val a = sc.parallelize(1 to 9,3)
scala>def myfunc[T](iter:Iterator[T]:Iterator[(T,T)] = {
var res = List[(T,T)]()
var pre = iter.next.while(iter,hasNext){
val cur = iter.next;
res.::=(pre,cur) pre = cur;
}
res.iterator })
scala>a.mapPartitions(myfunc).collect
res0:Array[(Int,Int)] = Array((2,3),(1,2),(5,6),(4,5),(8,9),(7.8))

上述例子中的函数myfunc是把分区中一个元素和它的下一个元素组成一个Tuple。因为分区中最后一个元素没有下一个元素了,所以(3,4)和(6,7)不在结果中。 
mapPartitions还有些变种,比如mapPartitionsWithContext,它能把处理过程中的一些状态信息传递给用户指定的输入函数。还有mapPartitionsWithIndex,它能把分区的index传递给用户指定的输入函数。

mapValuesmapValues顾名思义就是输入函数应用于RDD中key-value的Value。原RDD中的key保持不变,与新的value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD.

scala>val a = sc.parallelize(List("dog","tiger","lion","cat","panther","eagle"),2)
scala>val b =a.map(x=>(x.length,x))
scala>b.mapValues("x"+_+"x").collect
res5:Array[(Int,String)] = Array((3,xdogx),(5,xtigerx),(4,xlions),(3,xcatx),(7,xpantherx),(5,xeaglex))

mapWith

mapWth是map的另外一个变种,map只需要一个输入函数,而mapWth有两个输入函数。它的定义如下:def mapWith[A: ClassTag, U: ](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => U): RDD[U]

  • 第一个函数constructA是把RDD的partition index(index从0开始)作为输入,输出为新类型A;
  • 第二个函数f是把二元组(T, A)作为输入(其中T为原RDD中的元素,A为第一个函数的输出),输出类型为U。

举例:把partition index乘以10,然后加上2作为新的RDD的元素。

val x = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10),3)
x.mapWith(a=>a*10)((a,b)=>(b+2)).collect
res4:Array[Int] = Array(2,2,2,12,12,12,22,22,22,22)

flatMap

与map类似,区别是原RDD中的元素经map处理后只能生产一个元素,而原RDD中的元素经flatmap处理后可生成多个元素来构建新RDD。 
举例:对原RDD中的每个元素x产生y个元素(从1到y,y为元素x的值)

scala>val a = sc.parallelize(1 to 4,2)
scala>val b = a.flatMap(x=>1 to x)
scala>b.collect
res12:Array[Int] =Array(1,1,2,1,2,3,1,2,3,4)

flatMapWith

flatMapWith与mapWith很类似,都是接收两个函数,一个函数把partitionIndex作为输入,输出是一个新类型A;另外一个函数是以二元组(T,A)作为输入,输出为一个序列,这些序列里面的元素组成了新的RDD。它的定义如下:

def flatMapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => Seq[U]): RDD[U]

举例:

scala> val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 3)
scala> a.flatMapWith(x => x, true)((x, y) => List(y, x)).collect
res58: Array[Int] = Array(0, 1, 0, 2, 0, 3, 1, 4, 1, 5, 1, 6, 2, 7, 2,
8, 2, 9)

flatMapValues

flatMapValues类似于mapValues,不同的在于flatMapValues应用于元素为KV对的RDD中Value。每个一元素的Value被输入函数映射为一系列的值,然后这些值再与原RDD中的Key组成一系列新的KV对。

举例

scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> val b = a.flatMapValues(x=>x.to(5))
scala> b.collect
res3: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (3,4), (3,5))

上述例子中原RDD中每个元素的值被转换为一个序列(从其当前值到5),比如第一个KV对(1,2), 其值2被转换为2,3,4,5。然后其再与原KV对中Key组成一系列新的KV对(1,2),(1,3),(1,4),(1,5)。

reduce

reduce将RDD中元素两两传递给输入函数,同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止。

举例

scala> val c = sc.parallelize(1 to 10)
scala> c.reduce((x, y) => x + y)
res4: Int = 55

上述例子中对RDD中的元素求和。

reduceByKey

顾名思义,reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行reduce,因此,Key相同的多个元素的值被reduce为一个值,然后与原RDD中的Key组成一个新的KV对。

举例:

scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> a.reduceByKey((x,y) => x + y).collect
res7: Array[(Int, Int)] = Array((1,2), (3,10))

上述例子中,对Key相同的元素的值求和,因此Key为3的两个元素被转为了(3,10)。

Spark RDD API详解之:Map和Reduce的更多相关文章

  1. Spark RDD API详解(一) Map和Reduce

    RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...

  2. Spark RDD API具体解释(一) Map和Reduce

    本文由cmd markdown编辑.原始链接:https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,不论什么数据在S ...

  3. 大数据学习笔记——Spark工作机制以及API详解

    Spark工作机制以及API详解 本篇文章将会承接上篇关于如何部署Spark分布式集群的博客,会先对RDD编程中常见的API进行一个整理,接着再结合源代码以及注释详细地解读spark的作业提交流程,调 ...

  4. RDD的详解、创建及其操作

    RDD的详解 RDD:弹性分布式数据集,是Spark中最基本的数据抽象,用来表示分布式集合,支持分布式操作! RDD的创建 RDD中的数据可以来源于2个地方:本地集合或外部数据源 RDD操作 分类 转 ...

  5. Java 8 Stream API详解--转

    原文地址:http://blog.csdn.net/chszs/article/details/47038607 Java 8 Stream API详解 一.Stream API介绍 Java8引入了 ...

  6. 百度地图API详解之事件机制,function“闭包”解决for循环和监听器冲突的问题:

    原文:百度地图API详解之事件机制,function"闭包"解决for循环和监听器冲突的问题: 百度地图API详解之事件机制 2011年07月26日 星期二 下午 04:06 和D ...

  7. Java8学习笔记(五)--Stream API详解[转]

    为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX 对 ...

  8. [转]百度地图API详解之地图坐标系统

    博客原文地址:http://www.jiazhengblog.com/blog/2011/07/02/289/ 我们都知道地球是圆的,电脑显示器是平的,要想让位于球面的形状显示在平面的显示器上就必然需 ...

  9. Spark RDD API扩展开发

    原文链接: Spark RDD API扩展开发(1) Spark RDD API扩展开发(2):自定义RDD 我们都知道,Apache Spark内置了很多操作数据的API.但是很多时候,当我们在现实 ...

随机推荐

  1. Azure DocumentDB 正式发布

    DocumentDB 简介 一种 NoSQL JSON 数据库 Azure DocumentDB 提供完全托管的 NoSQL 数据库服务,高度可用,自动缩放,开发简易,可以加速并预测性能.它适合诸如 ...

  2. Data Flow ->> Excel Connection遇到错误:[Excel Source [16]] Error: SSIS Error Code DTS_E_CANNOTACQUIRECONNECTIONFROMCONNECTIONMANAGER.....

    在SSIS下做Excel导入数据的时候遇到下面的错误 [Excel Source [16]] Error: SSIS Error Code DTS_E_CANNOTACQUIRECONNECTIONF ...

  3. wcf 配置与代码创建

    <behaviors> <serviceBehaviors> <behavior name="MyServiceBehavior"> <s ...

  4. 【Leetcode】【Medium】Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  5. 安装或删除Skype for business server组件的时候,报错"错误: 找不到 SQL 服务"

    安装或删除Skype for business server组件的时候,到了安装所有并置数据库的时候,报错“错误: 找不到 SQL 服务.确保计算机 skype.centos.com 中安装了 SQL ...

  6. c++中左值的含义

    <<cpp primer plus 6th edition>>中的原文(Chapter 8 Adventures in Functions): What is an lvalu ...

  7. ADF中遍历VO中的行数据(Iterator)

    在ADF中VO实质上就是一个迭代器, 1.在Application Module的实现类中,直接借助VO实现类和Row的实现类 TestVOImpl organizationUser = (TestV ...

  8. 【转】Spring Boot特性

    https://yq.aliyun.com/articles/25530 摘要: 1. SpringApplication SpringApplication 类是启动 Spring Boot 应用的 ...

  9. PAT——1006. 换个格式输出整数

    1006. 换个格式输出整数 (15) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 让我们用字母B来表示“百” ...

  10. Oracle以固定字符截取字符串

    CREATE OR REPLACE FUNCTION "F_SPLIT" (p_str IN CLOB, p_delimiter IN VARCHAR2) RETURN ty_st ...