LightOJ 1203--Guarding Bananas(二维凸包+内角计算)
Time Limit: 3 second(s) | Memory Limit: 32 MB |
Once there was a lazy monkey in a forest. But he loved banana too much. One day there was a storm in the jungle and all the bananas fell from the trees. The monkey didn't want to lose any of the bananas. So, he wanted to find a banana such that he can eat that and he can also look after the other bananas. As he was lazy, he didn't want to move his eyes too wide. So, you have to help him finding the banana from where he can look after all the bananas but the degree of rotating his eyes is as small as possible. You can assume that the position of the bananas can be modeled as 2D points.
Here a banana is shown, from where the monkey can look after all the bananas with minimum eye rotation.
Input
Input starts with an integer T (≤ 13), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 105) denoting the number of bananas. Each of the next n lines contains two integers x y (-109 ≤ x, y ≤ 109) denoting the co-ordinate of a banana. There can me more than one bananas in the same co-ordinate.
Output
For each case, print the case number and the minimum angle in degrees. Errors less than 10-6 will be ignored.
Sample Input |
Output for Sample Input |
2 1 4 4 4 0 0 10 0 10 10 2 1 |
Case 1: 0 Case 2: 45.0000000 |
Note
Dataset is huge. Use faster I/O methods.
- 题意:在所有给定的香蕉中找到一个香蕉,使得从这个香蕉看向其他香蕉的角度尽可能小的同时看到的香蕉数目尽可能多。
- 由于香蕉可以化为半径忽略不计的二维平面上的点,所以可以想到,站在这些点的凸包的顶点处看过去的角度小并且看到的点更多,否则,总可以向这些定顶点处移动,使得看到的点更多或者角度更小。
- 所以这道题就是求其凸包,然后找到里面最小的那个内角。
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1e5 + ;
const double pi = acos(-1.0);
const double eps = 1e-;
int sgn(double x) {
if (fabs(x) < eps)return ;
if (x < )return -;
else return ;
}
typedef struct point {
double x, y;
point() { }
point(double a, double b) {
x = a;
y = b;
}
point operator -(const point &b) const {
return point(x - b.x, y - b.y);
}
double operator *(const point &b)const {
return x*b.x + y*b.y;
}
double operator ^(const point &b)const { //叉乘
return x*b.y - y*b.x;
}
bool operator <(point b)const {
return sgn(x - b.x) == ? sgn(y - b.y)< : x<b.x;
}
//返回pa,pb的夹角,该点看a,b的夹角,弧度制
//弧度=度×π/180°
//度=弧度×180°/π
double rad(point a, point b) {
point p = *this;
return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p)*(b - p)));
}
}point;
point p[maxn];
int n = , res[maxn];
int top;//top模拟栈顶
bool multi(point p1, point p2, point p0) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向,>0,p1p0在p2p0的顺时针方向
return (p1.x - p0.x)*(p2.y - p0.y) >= (p2.x - p0.x)*(p1.y - p0.y);
}
double Graham() {
int i, len;//top模拟栈顶
sort(p, p + n);
top = ;
//少于3个点也就没有办法形成凸包
if (n == )return ; res[] = ;
if (n == )return ; res[] = ;
if (n == )return ; res[] = ;
for (i = ; i < n; i++) {
while (top&&multi(p[i], p[res[top]], p[res[top - ]])) //如果当前这个点和栈顶两个点构成折线右拐了,就回溯到上一个点
top--; //弹出栈顶
res[++top] = i; //否则将这个点入栈
}
len = top;
res[++top] = n - ;
for (i = n - ; i >= ; i--) {
while (top != len&&multi(p[i], p[res[top]], p[res[top - ]]))
top--;
res[++top] = i;
}
double ans =0x3f3f3f;
res[top] = res[],res[top + ] = res[];
for (int i = ; i <= top; i++) {
ans = min(ans, p[res[i]].rad(p[res[i + ]], p[res[i - ]]));
}
return ans / pi * ;
}
inline int read()
{
int x = , f = ; char ch = getchar();
while (ch<'' || ch>'') { if (ch == '-')f = -; ch = getchar(); }
while (ch >= ''&&ch <= '') { x = x * + ch - ''; ch = getchar(); }
return x*f;
}
int main(void) {
int t;
t = read();
for (int cnt = ; cnt <= t; cnt++) {
cin >> n;
for (int i = ; i < n; i++) {
p[i].x = read();
p[i].y = read();
}
printf("Case %d: ", cnt);
printf("%.7lf\n", Graham());
}
return ;
}
LightOJ 1203--Guarding Bananas(二维凸包+内角计算)的更多相关文章
- LightOJ 1203 Guarding Bananas (凸包最小顶角)
题目链接:LightOJ 1203 Problem Description Once there was a lazy monkey in a forest. But he loved banana ...
- 计算几何 二维凸包问题 Andrew算法
凸包:把给定点包围在内部的.面积最小的凸多边形. Andrew算法是Graham算法的变种,速度更快稳定性也更好. 首先把全部点排序.依照第一keywordx第二keywordy从小到大排序,删除反复 ...
- 使用Graham扫描法求二维凸包的一个程序
#include <iostream> #include <cstring> #include <cstdlib> #include <cmath> # ...
- luogu P2742 【模板】二维凸包 / [USACO5.1]圈奶牛Fencing the Cows
题解: 二维凸包裸题 按照x坐标为第一关键字,y坐标为第二关键字排序 然后相邻判断叉积用单调队列搞过去 正反都做一次就好了 代码: #include <bits/stdc++.h> usi ...
- Luogu P2742 模板-二维凸包
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...
- 【洛谷 P2742】【模板】二维凸包
题目链接 二维凸包板子..有时间会补总结的. #include <cstdio> #include <cmath> #include <algorithm> usi ...
- poj 2079 Triangle (二维凸包旋转卡壳)
Triangle Time Limit: 3000MS Memory Limit: 30000KB 64bit IO Format: %I64d & %I64u Submit Stat ...
- poj 2187 Beauty Contest(二维凸包旋转卡壳)
D - Beauty Contest Time Limit:3000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- UVA 10652 Board Wrapping(二维凸包)
传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...
随机推荐
- 建立makefile
一.目的 1.1 熟悉makefile的基本规则,学会建立自己的makefile,通过makefile提高编程效率 1.2 学会通过autotools建立makefile来更好更高效地管理软件项目工程 ...
- TE7下的创建组件AxHost失败
问题比较诡异.时好时坏的.网上的办法试过了,没用. 最后的解决办法是,把项目属性切换到Any CPU,然后勾选 32位优先,切换到界面设计状态,拖放控件,OK:运行,会出现红色提示:再次切换到项目属性 ...
- 【PHP系列】框架的抉择
缘起 在PHP开发中,选择合适的框架有助于加快软件开发,节约宝贵的项目时间,让开发者专注于功能的实现上.框架的问题是需要很多的投入,选择框架时,我们更看重这个框架的未来,存在多年的大型框架必须要有好的 ...
- DevExpress中 TreeList控件的常规配置
//以下为TreeList控件样式相关设置 this.treelist_SystemCfg.BackColor = Color.Transparent; this.treelist_SystemCfg ...
- 线程 Z
原文:http://www.albahari.com/threading/part5.aspx 专题:C#中的多线程 1并行编程Permalink 在这一部分,我们讨论 Framework 4.0 加 ...
- js 获取 网页屏幕高度 窗口高度 元素高度 滚动高度
常用: JS 获取浏览器窗口大小 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 // 获取窗口宽度 if (window.innerWidth) winWidth = ...
- np.arrange用法
np.arange()经常用,其用法总结如下: np.arange(0,60,2) 生成从0到60的步距为2的数组,其中0为初始值,60为终值,2步距, np.arange(60) 生成从0到59的默 ...
- NODE-环境变量的配置(踩坑总结)
初学Node.js,从官网下载了node.js的Windows Installer,安装完成后,通过控制台输入node命令,发现提示说“node"不是内部或外部命令,这通常是由于没有设置环境 ...
- C# 解决组合优化问题
Google Optimization Tools介绍 Google Optimization Tools(OR-Tools)是一款专门快速而便携地解决组合优化问题的套件.它包含了: 约束编程求解器. ...
- codeforces 814D An overnight dance in discotheque
题目链接 正解:贪心. 首先我们可以计算出每个圆被多少个圆覆盖. 很显然,最外面的圆是肯定要加上的. 然后第二层的圆也是要加上的.那么第三层就不可能被加上了.同理,第四层的圆又一定会被加上. 然后我们 ...