1203 - Guarding Bananas
Time Limit: 3 second(s) Memory Limit: 32 MB

Once there was a lazy monkey in a forest. But he loved banana too much. One day there was a storm in the jungle and all the bananas fell from the trees. The monkey didn't want to lose any of the bananas. So, he wanted to find a banana such that he can eat that and he can also look after the other bananas. As he was lazy, he didn't want to move his eyes too wide. So, you have to help him finding the banana from where he can look after all the bananas but the degree of rotating his eyes is as small as possible. You can assume that the position of the bananas can be modeled as 2D points.

Here a banana is shown, from where the monkey can look after all the bananas with minimum eye rotation.

Input

Input starts with an integer T (≤ 13), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 105) denoting the number of bananas. Each of the next n lines contains two integers x y (-109 ≤ x, y ≤ 109) denoting the co-ordinate of a banana. There can me more than one bananas in the same co-ordinate.

Output

For each case, print the case number and the minimum angle in degrees. Errors less than 10-6 will be ignored.

Sample Input

Output for Sample Input

2

1

4 4

4

0 0

10 0

10 10

2 1

Case 1: 0

Case 2: 45.0000000

Note

Dataset is huge. Use faster I/O methods.

  • 题意:在所有给定的香蕉中找到一个香蕉,使得从这个香蕉看向其他香蕉的角度尽可能小的同时看到的香蕉数目尽可能多。
  • 由于香蕉可以化为半径忽略不计的二维平面上的点,所以可以想到,站在这些点的凸包的顶点处看过去的角度小并且看到的点更多,否则,总可以向这些定顶点处移动,使得看到的点更多或者角度更小。
  • 所以这道题就是求其凸包,然后找到里面最小的那个内角。
  •  #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int maxn = 1e5 + ;
    const double pi = acos(-1.0);
    const double eps = 1e-;
    int sgn(double x) {
    if (fabs(x) < eps)return ;
    if (x < )return -;
    else return ;
    }
    typedef struct point {
    double x, y;
    point() { }
    point(double a, double b) {
    x = a;
    y = b;
    }
    point operator -(const point &b) const {
    return point(x - b.x, y - b.y);
    }
    double operator *(const point &b)const {
    return x*b.x + y*b.y;
    }
    double operator ^(const point &b)const { //叉乘
    return x*b.y - y*b.x;
    }
    bool operator <(point b)const {
    return sgn(x - b.x) == ? sgn(y - b.y)< : x<b.x;
    }
    //返回pa,pb的夹角,该点看a,b的夹角,弧度制
    //弧度=度×π/180°
    //度=弧度×180°/π
    double rad(point a, point b) {
    point p = *this;
    return fabs(atan2(fabs((a - p) ^ (b - p)), (a - p)*(b - p)));
    }
    }point;
    point p[maxn];
    int n = , res[maxn];
    int top;//top模拟栈顶
    bool multi(point p1, point p2, point p0) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向,>0,p1p0在p2p0的顺时针方向
    return (p1.x - p0.x)*(p2.y - p0.y) >= (p2.x - p0.x)*(p1.y - p0.y);
    }
    double Graham() {
    int i, len;//top模拟栈顶
    sort(p, p + n);
    top = ;
    //少于3个点也就没有办法形成凸包
    if (n == )return ; res[] = ;
    if (n == )return ; res[] = ;
    if (n == )return ; res[] = ;
    for (i = ; i < n; i++) {
    while (top&&multi(p[i], p[res[top]], p[res[top - ]])) //如果当前这个点和栈顶两个点构成折线右拐了,就回溯到上一个点
    top--; //弹出栈顶
    res[++top] = i; //否则将这个点入栈
    }
    len = top;
    res[++top] = n - ;
    for (i = n - ; i >= ; i--) {
    while (top != len&&multi(p[i], p[res[top]], p[res[top - ]]))
    top--;
    res[++top] = i;
    }
    double ans =0x3f3f3f;
    res[top] = res[],res[top + ] = res[];
    for (int i = ; i <= top; i++) {
    ans = min(ans, p[res[i]].rad(p[res[i + ]], p[res[i - ]]));
    }
    return ans / pi * ;
    }
    inline int read()
    {
    int x = , f = ; char ch = getchar();
    while (ch<'' || ch>'') { if (ch == '-')f = -; ch = getchar(); }
    while (ch >= ''&&ch <= '') { x = x * + ch - ''; ch = getchar(); }
    return x*f;
    }
    int main(void) {
    int t;
    t = read();
    for (int cnt = ; cnt <= t; cnt++) {
    cin >> n;
    for (int i = ; i < n; i++) {
    p[i].x = read();
    p[i].y = read();
    }
    printf("Case %d: ", cnt);
    printf("%.7lf\n", Graham());
    }
    return ;
    }

LightOJ 1203--Guarding Bananas(二维凸包+内角计算)的更多相关文章

  1. LightOJ 1203 Guarding Bananas (凸包最小顶角)

    题目链接:LightOJ 1203 Problem Description Once there was a lazy monkey in a forest. But he loved banana ...

  2. 计算几何 二维凸包问题 Andrew算法

    凸包:把给定点包围在内部的.面积最小的凸多边形. Andrew算法是Graham算法的变种,速度更快稳定性也更好. 首先把全部点排序.依照第一keywordx第二keywordy从小到大排序,删除反复 ...

  3. 使用Graham扫描法求二维凸包的一个程序

    #include <iostream> #include <cstring> #include <cstdlib> #include <cmath> # ...

  4. luogu P2742 【模板】二维凸包 / [USACO5.1]圈奶牛Fencing the Cows

    题解: 二维凸包裸题 按照x坐标为第一关键字,y坐标为第二关键字排序 然后相邻判断叉积用单调队列搞过去 正反都做一次就好了 代码: #include <bits/stdc++.h> usi ...

  5. Luogu P2742 模板-二维凸包

    Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...

  6. 【洛谷 P2742】【模板】二维凸包

    题目链接 二维凸包板子..有时间会补总结的. #include <cstdio> #include <cmath> #include <algorithm> usi ...

  7. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  8. poj 2187 Beauty Contest(二维凸包旋转卡壳)

    D - Beauty Contest Time Limit:3000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  9. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

随机推荐

  1. 如何创建一个基本JQuery的插件

    如何创建一个基本的插件 有时您希望在整个代码中提供一些功能.例如,也许你想要一个单一的方法,你可以调用一个jQuery选择,对选择执行一系列的操作.在这种情况下,您可能需要编写一个插件. 链接jQue ...

  2. hdu 1010 Tempter of the Bone(dfs)

    Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  3. svn up (svn update) 状态缩写含义

    A:add,新增  C:conflict,冲突  D:delete,删除  M:modify,本地已经修改  G:modify and merGed,本地文件修改并且和服务器的进行合并  U:upda ...

  4. 微信小程序——初始化一个小程序项目

    最近准备学习一下微信小程序,因为之前有react native项目经验,学习起来应该困难不大 微信小程序官网地址:https://mp.weixin.qq.com/debug/wxadoc/dev/i ...

  5. 面试题Spring Boot

    Spring Boot 是微服务中最好的 Java 框架. 我们建议你能够成为一名 Spring Boot 的专家. 问题一 Spring Boot.Spring MVC 和 Spring 有什么区别 ...

  6. 【Leetcode】【Medium】Unique Binary Search Trees II

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  7. ELK_Elastic Search和kibana版本对应关系

    https://www.elastic.co/downloads/past-releases/kibana-5-0-0 https://www.elastic.co/downloads/past-re ...

  8. JQuery里ajax的表单传值serialize()用法

          本文导读:在jQuery中,当我们使用ajax时,常常需要拼装 input数据以键值对(Key/Value)的形式发送到服务器,用JQuery的serialize方法可以轻松的完成这个工作 ...

  9. June 22nd 2017 Week 25th Thursday

    Happiness is when the desolated soul meets love. 幸福是孤寂的灵魂遭遇爱的邂逅. When living alone for a long period ...

  10. No module named _sqlite3

    [root@lgj01 opsadmin]# python manage.py startapp accountTraceback (most recent call last):  File &qu ...