PCA和SVD
一、PCA(Principal Component Analysis)
主成分分析,数据从原来的坐标系转换到新的坐标系,只保留新坐标系中的前面几个坐标轴,即对数据进行了降维处理
1、算法描述
(1)第一个新坐标轴:原数据集中方差最大的方向
(2)第二个新坐标轴:与第一个新坐标轴正交且具有最大方差的方向
(3)一直重复,重复次数为原始数据中特征的数目,但是到最后只保留最先产生的几个新坐标轴,而忽略余下的坐标轴
2、步骤
(1)计算样本数据各个特征的平均值
(2)样本各个特征的值:=样本各个特征的值-平均值
(3)计算协方差矩阵
(4)计算协方差矩阵的特征值和特征向量
(5)将特征值逆序排序
(6)保留最上面的N个特征向量
3、举例(待续)
二、SVD(Singular Value Decomposition)
奇异值分解,矩阵分解中的一种,矩阵分解是将数据矩阵分解为多个独立部分的过程
1、算法描述
Datam*n=Um*m∑m*nVTn*n
矩阵∑的对角元素是从大到小排列的,这些对角元素称为奇异值
在某个奇异值的数目(r个)之后,其他的奇异值都置为0,即数据集中仅有r个重要特征,而其余特征则都是噪声或者冗余特征
2、如何选取r
(1)保留矩阵中90%的能量信息:将所有的奇异值求平方和,将奇异值的平方和累加到90%为止
(2)当有上万个奇异值时,仅保留前面2000-3000个
3、举例(待续)
4、奇异值分解(待续)
PCA和SVD的更多相关文章
- 降维方法PCA与SVD的联系与区别
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...
- PCA和SVD(转)
最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把 ...
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- 数据预处理:PCA,SVD,whitening,normalization
数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀 ...
- 浅谈 PCA与SVD
前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- Machine Learning in Action – PCA和SVD
降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示, ...
- PCA和SVD最佳理解
奇异值分解(SVD)原理与在降维中的应用 https://www.cnblogs.com/pinard/p/6251584.html 最通俗易懂的PCA主成分分析推导 https://blog.csd ...
- 特征向量、特征值以及降维方法(PCA、SVD、LDA)
一.特征向量/特征值 Av = λv 如果把矩阵看作是一个运动,运动的方向叫做特征向量,运动的速度叫做特征值.对于上式,v为A矩阵的特征向量,λ为A矩阵的特征值. 假设:v不是A的速度(方向) 结果如 ...
随机推荐
- 消息传递 树形DP
非常妙的树形DP:由于n很小,我们可以枚举每一个点作为第一个节点,计算其时间花费 那么问题就转化为对于给点节点求花费时间. 通过观察,显然我们会发现先传给花费时间多的人更加合算,因为这样可以最大限度的 ...
- 实验三 Java敏捷开发与XP实践
北京电子科技学院(BESTI) 实 验 报 告 课程:Java程序设计 班级:1353 姓名:陈巧然 ...
- apache和IIS共享80端口解决办法
第一步:把iis所发布的网站默认端口由80改为8080:第二步:修改apache的httpd.conf配置文件. 首先,要让apache支持转发也就是做iis的代理那么就要先启 用apache的代理模 ...
- 【树形DP】【P1351】 【NOIP2014D1T2】联合权值
传送门 Description 无向连通图 \(G\) 有 \(n\) 个点, \(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\) ,每 ...
- python递归读取目录列表
import os def listdirs(base): for line in os.listdir(base): fullpath = os.path.join(base,line) if os ...
- bzoj 1468 Tree 点分
Tree Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1972 Solved: 1101[Submit][Status][Discuss] Desc ...
- window10下的solr6.1.0入门笔记之---安装部署
1.安装部署java1.6+ ,确保jre安装[安装步骤略] 安装后的环境为jdk1.8+ jre1.8+ 2.安装ant 下载:官网=>http://ant.apache.org/=> ...
- redis.conf详细说明
daemonize yes #---默认值no,该参数用于定制redis服务是否以守护模式运行.--- pidfile /var/run/redis.pid #默认值/var/run/redis.pi ...
- [BZOJ1076][SCOI2008]奖励关解题报告|状压DP
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝 ...
- 【vijos】P1448 校门外的树
[题意]两种操作,[L,R]种新的树(不覆盖原来的),或查询[L,R]树的种类数.n<=50000. [算法]树状数组||线段树 [题解]这题可以用主席树实现……不过因为不覆盖原来的,所以有更简 ...