BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185
题意:
给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积。
题解:
先找出凸包,然后旋转卡壳。
在旋转卡壳中有一个结论:最小覆盖矩形一定有一条边在凸包上。
所以先枚举矩形在凸包上的那条边(p[i],p[i+1]),然后利用单调性找出p[i]的对踵点p[u]。
至于左右两侧的切点p[l]和p[r],要利用它们连线在直线(p[i],p[i+1])上投影长度的单调性求出。
最后将找出的矩形顶点再做一遍极角排序即可。
AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#define MAX_N 50005
#define INF_LF 1e14
#define EPS 1e-7 using namespace std; struct Coor
{
double x,y;
Coor(double _x,double _y) { x=_x,y=_y; }
Coor(){}
friend Coor operator + (const Coor &a,const Coor &b)
{
return Coor(a.x+b.x,a.y+b.y);
}
friend Coor operator - (const Coor &a,const Coor &b)
{
return Coor(a.x-b.x,a.y-b.y);
}
friend Coor operator * (const Coor &a,double b)
{
return Coor(a.x*b,a.y*b);
}
friend Coor operator / (const Coor &a,double b)
{
return Coor(a.x/b,a.y/b);
}
friend double len(const Coor &a,const Coor &b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
friend double dot(const Coor &a,const Coor &b)
{
return a.x*b.x+a.y*b.y;
}
friend double cross(const Coor &a,const Coor &b)
{
return a.x*b.y-a.y*b.x;
}
friend double area(const Coor &a,const Coor &b,const Coor &c)
{
return fabs(cross(b-a,c-a));
}
friend double length(const Coor &a)
{
return sqrt(dot(a,a));
}
friend double pro(const Coor &a,const Coor &b)
{
return dot(a,b)/length(b);
}
friend Coor proc(const Coor &a,const Coor &b,const Coor &c)
{
Coor v=c-b;
return b+v*dot(v,a-b)/dot(v,v);
}
}; int n,tot=;
double ans=INF_LF;
Coor p[MAX_N];
Coor con[MAX_N];
Coor rect[MAX_N]; void read()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
} bool cmp(const Coor &a,const Coor &b)
{
double c=cross(a-p[],b-p[]);
return c!= ? c> : len(p[],a)<len(p[],b);
} inline bool eq(double x,double y)
{
return fabs(x-y)<EPS;
} void graham()
{
for(int i=;i<=n;i++)
{
if(p[i].y<p[].y || (p[i].y==p[].y && p[i].x<p[].x))
{
swap(p[i],p[]);
}
}
sort(p+,p++n,cmp);
con[++tot]=p[],con[++tot]=p[];
for(int i=;i<=n;i++)
{
while(tot>= && cross(con[tot]-con[tot-],p[i]-con[tot])<=) tot--;
con[++tot]=p[i];
}
} inline int mod(int x)
{
return ((x-)%tot+tot)%tot+;
} void rc()
{
int u=,l=,r=;
for(int i=;i<=tot;i++)
{
if(con[i].x<con[l].x || (con[i].x==con[l].x && con[i].y>con[l].y)) l=i;
if(con[i].x>con[r].x || (con[i].x==con[r].x && con[i].y<con[r].y)) r=i;
}
for(int i=;i<=tot;i++)
{
while(area(con[i],con[mod(i+)],con[u])<area(con[i],con[mod(i+)],con[mod(u+)])) u=mod(u+);
while(pro(con[r]-con[l],con[mod(i+)]-con[i])<pro(con[r]-con[mod(l+)],con[mod(i+)]-con[i])) l=mod(l+);
while(pro(con[r]-con[l],con[mod(i+)]-con[i])<pro(con[mod(r+)]-con[l],con[mod(i+)]-con[i])) r=mod(r+);
double w=pro(con[r]-con[l],con[mod(i+)]-con[i]);
double h=area(con[i],con[mod(i+)],con[u])/length(con[mod(i+)]-con[i]);
if(w*h<ans)
{
ans=w*h;
Coor v=con[mod(i+)]-con[i];
rect[]=proc(con[l],con[i],con[mod(i+)]);
rect[]=proc(con[r],con[i],con[mod(i+)]);
rect[]=proc(con[l],con[u],con[u]+v);
rect[]=proc(con[r],con[u],con[u]+v);
}
}
for(int i=;i<;i++)
{
if(rect[i].y<rect[].y || (rect[i].y==rect[].y && rect[i].x<rect[].x))
{
swap(rect[],rect[i]);
}
}
sort(rect+,rect+,cmp);
for(int i=;i<;i++)
{
if(eq(rect[i].x,)) rect[i].x=;
if(eq(rect[i].y,)) rect[i].y=;
}
} void work()
{
graham();
rc();
printf("%.5f\n",ans);
for(int i=;i<;i++) printf("%.5f %.5f\n",rect[i].x,rect[i].y);
} int main()
{
read();
work();
}
BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳的更多相关文章
- bzoj 1185 [HNOI2007]最小矩形覆盖 凸包+旋转卡壳
题目大意 用最小矩形覆盖平面上所有的点 分析 有一结论:最小矩形中有一条边在凸包的边上,不然可以旋转一个角度让面积变小 简略证明 我们逆时针枚举一条边 用旋转卡壳维护此时最左,最右,最上的点 注意 注 ...
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
- BZOJ:1185: [HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...
- ●BZOJ 1185 [HNOI2007]最小矩形覆盖
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解: 计算几何,凸包,旋转卡壳 结论:矩形的某一条边在凸包的一条边所在的直线上. ( ...
随机推荐
- mysql replace 使用注意,update的时候 删除从表数据
使用REPLACE插入一条记录时,如果不重复,REPLACE就和INSERT的功能一样,如果有重复记录,REPLACE就使用新记录的值来替换原来的记录值. 使用REPLACE的最大好处就是可以将DEL ...
- centos7在vmware上无法上网
centos7在虚拟机中设置NAT后也无法上网! 首先激活网卡!打开桌面右键在终端中打开:cd /etc/sysconfig/network-scripts/ls 找到以ifcfg开头的,如ifcfg ...
- java 子类不能继承父类的static方法
先来看一段代码 /** * Created by bjchengpeng on 2018/7/19. */ /**运行结果 * woof * woofaa * * woof * Basenjiaa * ...
- 【Oracle】OGG数据初始化之RMAN
实验环境: 源端.目标端: DataBase:10.2.0.1.0 OS:OEL5.6 OGG:fbo_ggs_Linux_x86_ora11g_32bit 源端使用rman进行备份全库: RMAN& ...
- 我的Android进阶之旅------>Android无第三方Jar包的源代报错:The current class path entry belongs to container ...的解决方法
今天使用第三方Jar包afinal.jar时候.想看一下源码,无法看 然后像加入jar相应的源代码包.也无法加入相应的源代码,报错例如以下:The current class path entry b ...
- 深入ff and ffbase
用ff 包读取一个csv 文件 >options(fftempdir = [二进制文件存放的位置]) >file_chunks <- read.csv.ffdf(file=”big_ ...
- day4 字符串的使用方法
一.字符串切片 索引和切片 [起始位置:结束位置:步长] s1 = 'python全栈8期' # 索引从0开始[索引(下标,index)] print(s1[0]) print(s1[3]) prin ...
- Delphi 正则表达式语法(2): 或者与重复
Delphi 正则表达式语法(2): 或者与重复 // | 号的使用, | 是或者的意思 var reg: TPerlRegEx; begin reg := TPerlRegEx.Create ...
- wechat多开
右键wechat查看属性,找到目标(wechat的执行路径),复制 然后在桌面新建文档,输入下面命令,想多开几个就复制几行 start 复制的目标 另存为bat文件,所有文件类型 双击运行
- WCF RIA SERVICE相关技术
WCF RIA SERVICE实体属性拷贝 private void DoSubmit() { ((IEditableObject)this.RepairContract).EndEdit(); va ...