这几天继续在看Lowe大神的SIFT神作,看的眼花手脚抽筋。也是醉了!!!!实在看不下去,来点干货。我们知道opencv下自带SIFT特征检测以及MATCH匹配的库,这些库完全可以让我们进行傻瓜似的操作。但实际用起来的时候还不是那么简单。下文将对一个典型的基于OPENCV的SIFT特征点提取以及匹配的例程进行分析,并由此分析详细的对OPENCV中SIFT算法的使用进行一个介绍。

OPENCV下SIFT特征点提取与匹配的大致流程如下:

读取图片-》特征点检测(位置,角度,层)-》特征点描述的提取(16*8维的特征向量)-》匹配-》显示

其中,特征点提取主要有两个步骤,见上行黄子部分。下面做具体分析。

1、使用opencv内置的库读取两幅图片

2、生成一个SiftFeatureDetector的对象,这个对象顾名思义就是SIFT特征的探测器,用它来探测衣服图片中SIFT点的特征,存到一个KeyPoint类型的vector中。这里有必要说keypoint的数据结构,涉及内容较多,具体分析查看opencv中keypoint数据结构分析,里面讲的自认为讲的还算详细(表打我……)。简而言之最重要的一点在于:

keypoint只是保存了opencv的sift库检测到的特征点的一些基本信息,但sift所提取出来的特征向量其实不是在这个里面,特征向量通过SiftDescriptorExtractor 提取,结果放在一个Mat的数据结构中。这个数据结构才真正保存了该特征点所对应的特征向量。具体见后文对SiftDescriptorExtractor 所生成的对象的详解。

就因为这点没有理解明白耽误了一上午的时间。哭死!

3、对图像所有KEYPOINT提取其特征向量:

得到keypoint只是达到了关键点的位置,方向等信息,并无该特征点的特征向量,要想提取得到特征向量就还要进行SiftDescriptorExtractor 的工作,建立了SiftDescriptorExtractor 对象后,通过该对象,对之前SIFT产生的特征点进行遍历,找到该特征点所对应的128维特征向量。具体方法参见opencv中SiftDescriptorExtractor所做的SIFT特征向量提取工作简单分析。通过这一步后,所有keypoint关键点的特征向量被保存到了一个MAT的数据结构中,作为特征。

4、对两幅图的特征向量进行匹配,得到匹配值。

两幅图片的特征向量被提取出来后,我们就可以使用BruteForceMatcher对象对两幅图片的descriptor进行匹配,得到匹配的结果到matches中,这其中具体的匹配方法暂没细看,过段时间补上。

至此,SIFT从特征点的探测到最后的匹配都已经完成,虽然匹配部分不甚了解,只扫对于如何使用OPENCV进行sift特征的提取有了一定的理解。接下来可以开始进行下一步的工作了。

附:使用OPENCV下SIFT库做图像匹配的例程

// opencv_empty_proj.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include<vector>
using namespace std;
using namespace cv; int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "img.jpg"; //从文件中读入图像
Mat img = imread(imagename);
Mat img2=imread("img2.jpg"); //如果读入图像失败
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
if(img2.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
//显示图像
imshow("image before", img);
imshow("image2 before",img2); //sift特征检测
SiftFeatureDetector siftdtc;
vector<KeyPoint>kp1,kp2; siftdtc.detect(img,kp1);
Mat outimg1;
drawKeypoints(img,kp1,outimg1);
imshow("image1 keypoints",outimg1);
KeyPoint kp; vector<KeyPoint>::iterator itvc;
for(itvc=kp1.begin();itvc!=kp1.end();itvc++)
{
cout<<"angle:"<<itvc->angle<<"\t"<<itvc->class_id<<"\t"<<itvc->octave<<"\t"<<itvc->pt<<"\t"<<itvc->response<<endl;
} siftdtc.detect(img2,kp2);
Mat outimg2;
drawKeypoints(img2,kp2,outimg2);
imshow("image2 keypoints",outimg2); SiftDescriptorExtractor extractor;
Mat descriptor1,descriptor2;
BruteForceMatcher<L2<float>> matcher;
vector<DMatch> matches;
Mat img_matches;
extractor.compute(img,kp1,descriptor1);
extractor.compute(img2,kp2,descriptor2); imshow("desc",descriptor1);
cout<<endl<<descriptor1<<endl;
matcher.match(descriptor1,descriptor2,matches); drawMatches(img,kp1,img2,kp2,matches,img_matches);
imshow("matches",img_matches); //此函数等待按键,按键盘任意键就返回
waitKey();
return 0;
}

  

OPENCV下SIFT算法使用方法笔记的更多相关文章

  1. java 在centos6.5+eclipse环境下调用opencv实现sift算法

    java 在centos6.5+eclipse环境下调用opencv实现sift算法,代码如下: import org.opencv.core.Core; import org.opencv.core ...

  2. OpenCV空洞填充算法

    讨论帖: http://bbs.csdn.net/topics/391542633 在Matlab下,使用imfill可以很容易的完成孔洞填充操作,感觉这是一个极为常用的方法,然而不知道为什么Op ...

  3. OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...

  4. 《sift算法详解》阅读笔记

    原博客来自:http://blog.csdn.net/zddblog/article/details/7521424 定义: 尺度不变特征转化是一种计算机视觉算法,用于侦测和描述物体的局部性特征,在空 ...

  5. SIFT算法的应用--目标识别之Bag-of-words模型

    原文:http://blog.csdn.net/v_JULY_v/article/details/6555899 SIFT算法的应用 -目标识别之用Bag-of-words模型表示一幅图像 作者:wa ...

  6. SIFT算法:确定特征点方向

    SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.计算邻域梯度方向和幅值 2.计算梯度方向直方图 ...

  7. 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

    原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...

  8. SIFT算法

     备注:源代码还未理解,所以未附上——下周任务 一.SIFT算法 1.算法简介 尺度不变特征转换即SIFT (Scale-invariant feature transform)是一种计算机视觉的算法 ...

  9. SIFT算法原理(2)-极值点的精确定位

    在SIFT解析(一)建立高斯金字塔中,我们得到了高斯差分金字塔: 检测DOG尺度空间极值点 SIFT关键点是由DOG空间的局部极值点组成的.以中心点进行3X3X3的相邻点比较,检测其是否是图像域和尺度 ...

随机推荐

  1. python面向对象进阶(下)

    一.item系列:就是把字典模拟成一个字典去操作(操作字典就用item的方式) obj[‘属性’]的方式去操作属性时触发的方法 __getitem__:obj['属性'] 时触发 __setitem_ ...

  2. Optimizing TLB entries for mixed page size storage in contiguous memory

    A system and method for accessing memory are provided. The system comprises a lookup buffer for stor ...

  3. linux中时间精度的获取问题【转】

    转自:http://www.xuebuyuan.com/877633.html 目前项目需要,需要对时间进行基准,基准的精度在微秒.下午老刘给我说不能用do_gettimeofday因为他的精度虽然可 ...

  4. C语言比较巧妙的字符串分割程序

    在解析字符串时,能够解析的给出每个字符串的长度.内容.以及每个字符串的第一个字符的地址. short i; ; //切割之后的字符串的个数 ,ItemLen[],Idx[], ThCommandLen ...

  5. pom报错解决方法大全

    1.Failure to transfer org.apache.maven.plugins:maven-surefire-plugin:pom 解决方法: Windows: CMD --> c ...

  6. vue css动画

    .toggle-cart-enter-active, .toggle-cart-leave-active { transition: all .3s ease-out; } .toggle-cart- ...

  7. 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...

  8. Python datetime描述

    (1)字符串转datetime:>>> string = '2014-01-08 11:59:58'>>> time1 = datetime.datetime.st ...

  9. 前端读者 | 前端用户体验-UI动效设计

    本文来自互联网 @羯瑞 整理 UI动效现如今在 APP 和网页中几乎已经成为了基本的组成部分,经过仔细打磨的 UI动效对于整个界面的提升是显著的. 动效呈现出状态切换的过程,展现了元素之间的逻辑关系, ...

  10. DDD精彩

    MS STST 这难度太高了 有一个就很难的了 也许我工作的环境一般,能把SOLID简要描述一下的,都还没有遇到 SOLID还只属于OOD层次,OOA层面就更加没碰到了 Scrip 因为领域驱动设计的 ...