tensorflow模型持久化保存和加载--深度学习-神经网络
模型文件的保存
tensorflow将模型保持到本地会生成4个文件:
meta文件:保存了网络的图结构,包含变量、op、集合等信息
ckpt文件: 二进制文件,保存了网络中所有权重、偏置等变量数值,分为两个文件,一个是.data-00000-of-00001 文件,一个是 .index 文件
checkpoint文件:文本文件,记录了最新保持的5个模型文件列表
tf中模型保存使用 tf.train.Saver类来保存模型。使用方式:
1. 在Session外生成一个模型保存对象
saver = tf.train.Saver()
2. 在Session中以当前环境Session为参数,保存模型到本地磁盘
saver.save(sess,"./model/Model_test")
Saver类的构造函数定义:
def __init__(self,
var_list=None,
reshape=False,
sharded=False,
max_to_keep=5,
keep_checkpoint_every_n_hours=10000.0,
name=None,
restore_sequentially=False,
saver_def=None,
builder=None,
defer_build=False,
allow_empty=False,
write_version=saver_pb2.SaverDef.V2,
pad_step_number=False,
save_relative_paths=False,
filename=None):
常用的几个变量:
var_list: 指定要保存的变量的序列或字典,默认为None,保存所有变量
reshape: 可选参数,如果为True,表示允许变量以不同的形状保存,如果为False,表示保持的变量只能有同样一种形状和数据类型,默认为False;
max_to_keep: 定义最多保存最近的多少个模型文件,默认是5个;
keep_checkpoint_every_n_hours: 定义多少个小时保存模型一次,默认10000个小时;
name: 可选参数,添加到操作名称前的前缀,默认None;
restore_sequentially:定义在设备上是否按照顺序恢复变量,顺序恢复可以降低内参使用,默认False;
saver_def:可选参数,用在需要重建Saver对象场合,默认None;
allow_empty:是否允许保存一个没有任何变量的空图,默认False;
saver.save函数定义:
def save(self,
sess,
save_path,
global_step=None,
latest_filename=None,
meta_graph_suffix="meta",
write_meta_graph=True,
write_state=True,
strip_default_attrs=False):
常用参数:
sess: 当前的会话环境;
save_path: 模型保存路径;
global_step: 训练轮次,如果添加,会在模型文件名称后加上这个轮次的后缀,默认None,不添加,最好设置这个参数,要不然模型文件就会由于重名覆盖掉之前保存的;
latest_filename: checkpoint文本文件的名称,默认为‘checkpoint’
meta_graph_suffix: 保存的网络图结构文件的后缀,默认为mata;
write_meta_graph: 定义是否保存网络结构,默认是True保存,由于网络结构在训练过程中是不会变的,所以保存过一次后可以设置 write_meta_graph为False,不用每次都保存图结构;
简单示例,以下程序中 X和Y是一个含有128个元素的列表,每个元素是一个二维数组,定义公式 Y = (X*w1+b1)*(w2)+b2 ,使用tensorflow网络迭代求 w和b 的最优解,完成之后保持模型到本地 model_test 文件夹。
# -*- coding: utf-8 -*-)
import tensorflow as tf
from numpy.random import RandomState
# 定义训练数据batch的大小
batch_size = 8
# 在shape上使用None表示该维度的具体数值不定
x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
# 定义神经网络的参数
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
bias1 = tf.Variable(tf.random_normal([3], stddev=1, seed=1))
bias2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
# 定义神经网络前向传播的过程,即操作
a = tf.nn.relu(tf.matmul(x, w1) + bias1)
y = tf.nn.relu(tf.matmul(a, w2) + bias2)
# 定义损失函数和反向传播算法
loss = tf.reduce_sum(tf.pow((y - y_), 2))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) # 梯度下降优化算法
# produce the data,通过随机数生成一个模拟数据集
rdm = RandomState(seed=1) # 设置seed = 1 ,使每次生成的随机数一样
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[x1 + 10 * x2] for (x1, x2) in X]
# 生成一个保持模型对象
saver = tf.train.Saver()
# creare a session,创建一个会话来运行TensorFlow程序
with tf.Session() as sess:
# 初始化变量
sess.run(tf.global_variables_initializer())
# 设定训练的轮数
STEPS = 10000
for i in range(STEPS + 1):
# get batch_size samples data to train,每次选取batch_size个样本进行训练
start = (i * batch_size) % dataset_size
end = min(start + batch_size, dataset_size)
# 通过选取的样本训练神经网络并更新参数
sess.run(train_step, feed_dict={x: X[start: end], y_: Y[start: end]})
if i % 500 == 0:
# 每隔一段时间计算在所有数据上的loss并输出
total_cross_entropy= sess.run([loss], feed_dict={x: X, y_: Y})
print ("steps: {}, total loss: {}".format(i,total_cross_entropy))
# 在训练结束之后,保持神经网络模型
saver.save(sess, "./model_saved/model_test")
print sess.run((w1,bias1))
print('^^^^^^^^^^^^^^^^^^^^^^^^^')
print sess.run((w2,bias2))
# output:
# steps: 0, total loss: [2599.938]
# steps: 500, total loss: [873.66064]
# steps: 1000, total loss: [667.79114]
# steps: 1500, total loss: [483.07538]
# steps: 2000, total loss: [300.2436]
# steps: 2500, total loss: [159.57596]
# steps: 3000, total loss: [74.0152]
# steps: 3500, total loss: [30.022282]
# steps: 4000, total loss: [10.848581]
# steps: 4500, total loss: [3.8684735]
# steps: 5000, total loss: [1.6775348]
# steps: 5500, total loss: [0.87090385]
# steps: 6000, total loss: [0.47393078]
# steps: 6500, total loss: [0.2628175]
# steps: 7000, total loss: [0.13229856]
# steps: 7500, total loss: [0.058554076]
# steps: 8000, total loss: [0.022747971]
# steps: 8500, total loss: [0.007896027]
# steps: 9000, total loss: [0.002599821]
# steps: 9500, total loss: [0.0007222026]
# steps: 10000, total loss: [0.00021833208]
# (array([[-0.8113182 , 0.741788 , -0.06654923],
# [-2.4427042 , 1.7258024 , 3.505848 ]], dtype=float32), array([-0.8113182 , 0.9206883 , -0.00473781], dtype=float32))
# ^^^^^^^^^^^^^^^^^^^^^^^^^
# (array([[-0.8113182],
# [ 1.5360606],
# [ 2.0962803]], dtype=float32), array([-1.4044524], dtype=float32))
经过10000次迭代之后完成训练,在本地model_test目录下创建了模型的4个文件:
模型文件的加载
模型文件的图结构跟数据是分开保存的,加载模型时候可以先加载图结构,再加载图中的参数(在Session中操作):
saver=tf.train.import_meta_graph('./model_saved/model_test.meta')
saver.restore(sess, tf.train.latest_checkpoint('./model_saved'))
或者一次性加载:
saver = tf.train.Saver()
saver.restore(sess, './model_saved/model_test')
或:
saver.restore(sess, tf.train.latest_checkpoint('./model_saved'))
‘model_test’是保存的模型文件名称(前缀名,不带后缀)
更加安全一点的加载方式,先判断模型文件是否存在判断(推荐使用这种方式):
ckpt = tf.train.get_checkpoint_state('./model_saved')
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
# -*- coding: utf-8 -*-)
import tensorflow as tf
from numpy.random import RandomState
# 定义训练数据batch的大小
batch_size = 8
# 在shape上使用None表示该维度的具体数值不定
x = tf.placeholder(tf.float32, shape=(None, 2), name='x-input')
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
# 定义神经网络的参数
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
bias1 = tf.Variable(tf.random_normal([3], stddev=1, seed=1))
bias2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1))
# 定义神经网络前向传播的过程,即操作
a = tf.nn.relu(tf.matmul(x, w1) + bias1)
y = tf.nn.relu(tf.matmul(a, w2) + bias2)
# produce the data,通过随机数生成一个模拟数据集
rdm = RandomState(seed=1) # 设置seed = 1 ,使每次生成的随机数一样
dataset_size = 128
X = rdm.rand(dataset_size, 2)
Y = [[x1 + 10 * x2] for (x1, x2) in X]
# creare a session,创建一个会话来运行TensorFlow程序
with tf.Session() as sess:
saver = tf.train.import_meta_graph('./model_saved/model_test.meta')
saver.restore(sess, tf.train.latest_checkpoint('./model_saved'))
# 初始化变量
sess.run(tf.global_variables_initializer())
print(sess.run(y,feed_dict={x: X[0: 10], y_: Y[0: 10]}))
# output:
# [[2.4518511]
# [1.4534602]
# [1.7382364]
# [1.8725655]
# [2.3733683]
# [2.4501202]
# [2.0117776]
# [1.582149 ]
# [2.4224167]
# [1.7438407]]
tf.train.Saver常用函数列表:
操作 描述
类tf.train.Saver(Saving and Restoring Variables)
tf.train.Saver.__init__(var_list=None, reshape=False,
sharded=False, max_to_keep=5,
keep_checkpoint_every_n_hours=10000.0,
name=None, restore_sequentially=False,
saver_def=None, builder=None) 创建一个存储器Saver
var_list定义需要存储和恢复的变量
tf.train.Saver.save(sess, save_path, global_step=None,
latest_filename=None, meta_graph_suffix=’meta’,
write_meta_graph=True) 保存变量
tf.train.Saver.restore(sess, save_path) 恢复变量
tf.train.Saver.last_checkpoints 列出最近未删除的checkpoint 文件名
tf.train.Saver.set_last_checkpoints(last_checkpoints) 设置checkpoint文件名列表
tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time) 设置checkpoint文件名列表和时间戳
---------------------
tensorflow模型持久化保存和加载--深度学习-神经网络的更多相关文章
- tensorflow模型持久化保存和加载
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...
- 超详细的Tensorflow模型的保存和加载(理论与实战详解)
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...
- 三、TensorFlow模型的保存和加载
1.模型的保存: import tensorflow as tf v1 = tf.Variable(1.0,dtype=tf.float32) v2 = tf.Variable(2.0,dtype=t ...
- Python之模型的保存和加载-5.3
一.模型的保存,主要是我们在训练完成的时候把训练下来的数据保存下来,这个也就是我们后续需要使用的模型算法.模型的加载,在保存好的模型上面我们通过原生保存好的模型,去计算新的数据,这样不用每次都要去训练 ...
- TensorFlow模型保存和加载方法
TensorFlow模型保存和加载方法 模型保存 import tensorflow as tf w1 = tf.Variable(tf.constant(2.0, shape=[1]), name= ...
- keras中的模型保存和加载
tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. ...
- Tensorflow 模型持久化saver及加载图结构
主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部 ...
- 从头学pytorch(十二):模型保存和加载
模型读取和存储 总结下来,就是几个函数 torch.load()/torch.save() 通过python的pickle完成序列化与反序列化.完成内存<-->磁盘转换. Module.s ...
- 使用Pytorch在多GPU下保存和加载训练模型参数遇到的问题
最近使用Pytorch在学习一个深度学习项目,在模型保存和加载过程中遇到了问题,最终通过在网卡查找资料得已解决,故以此记之,以备忘却. 首先,是在使用多GPU进行模型训练的过程中,在保存模型参数时,应 ...
随机推荐
- 过滤xss攻击脚本
<?php /** * @blog http://www.phpddt.com * @param $string * @param $low 安全别级低 */ function clean_xs ...
- springBoot 官方整合的redis 使用教程:(StringRedisTemplate 方式存储 Object类型value)
前言:最近新项目准备用 redis 简单的缓存 一些查询信息,以便第二次查询效率高一点. 项目框架:springBoot.java.maven 说明:edis存储的数据类型,key一般都是Strin ...
- 09 OCP知识点讲解 之 LRU链与脏LRU链
OCP知识点讲解 之 LRU链与脏LRU链 分类: Oracle 2012-06-30 10:49:26 一.LRU链: 任何缓存的大小都是有限制的,并且总不如被缓存的数据多.就像Buffer c ...
- Dynamic Ambient Occlusion and Indirect Lighting
This sample was presented on the Nvida witesite, which detail a new idea to calculate the ambient oc ...
- es6 数组扩展方法
1.扩展运算符 含义: 扩展运算符,三个点(...),将一个数组转为用逗号分隔的参数顺序. 例如: console.log([1,2,3]); console.log(...[1,2,3]); 结 ...
- Qt5应用程序封包
系统环境:windows10+vs2017+qt5.12 目的:生成.exe可执行文件. 步骤: 1.选择release模式,生成解决方案. 2.打开命令行,cd到生成的可执行文件.exe目录下 3. ...
- 竞赛题解 - Palisection(CF-17E)
Palisection(CF-17E) - 竞赛题解 Manacher学到一定程度,也需要练一下有趣的题了-- (这是多老的题了 \(QwQ\))[传送门] 『题意』 给出一个字符串,求总共有多少对不 ...
- python打印99乘法表
代码如下: print(XXX,end="\t") #表示打印不换行 附带python部分转义字符:
- JAVA 中的文件读取
1. InputStream / OutputStream处理字节流抽象类:所有输入.输出(内存)类的超类,一般使用 FileInputStream / FileOutputStream 输出字符 u ...
- 如何将24位RGB颜色转换16位RGB颜色
有许多朋友第一次使用16位彩色显示屏会遇到如何将24位RGB颜色转换为对应的16位RGB颜色的问题, 通过查阅相关资料,就写一下其中的转换原理吧,希望对大家会有所帮助. 我们知道24位RGB是分别由8 ...