SSE,MSE,RMSE,R-square 指标讲解
SSE(和方差、误差平方和):The sum of squares due to error
MSE(均方差、方差):Mean squared error
RMSE(均方根、标准差):Root mean squared error
R-square(确定系数):Coefficient of determination
Adjusted R-square:Degree-of-freedom adjusted coefficient of determination
下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!
一、SSE(和方差)
该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下
SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样
二、MSE(均方差)
该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下
三、RMSE(均方根)
该统计参数,也叫回归系统的拟合标准差,是MSE的平方根,就算公式如下
在这之前,我们所有的误差参数都是基于预测值(y_hat)和原始值(y)之间的误差(即点对点)。从下面开始是所有的误差都是相对原始数据平均值(y_ba)而展开的(即点对全)!!!
四、R-square(确定系数)
在讲确定系数之前,我们需要介绍另外两个参数SSR和SST,因为确定系数就是由它们两个决定的
(1)SSR:Sum of squares of the regression,即预测数据与原始数据均值之差的平方和,公式如下
(2)SST:Total sum of squares,即原始数据和均值之差的平方和,公式如下
细心的网友会发现,SST=SSE+SSR,呵呵只是一个有趣的问题。而我们的“确定系数”是定义为SSR和SST的比值,故
其实“确定系数”是通过数据的变化来表征一个拟合的好坏。由上面的表达式可以知道“确定系数”的正常取值范围为[0 1],越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好
转自:https://blog.csdn.net/ac540101928/article/details/75388823
SSE,MSE,RMSE,R-square 指标讲解的更多相关文章
- SSE,MSE,RMSE,R-square指标讲解
SSE(和方差.误差平方和):The sum of squares due to errorMSE(均方差.方差):Mean squared errorRMSE(均方根.标准差):Root mean ...
- Data Mining: SSE,MSE,RMSE,R-square指标讲解
转载自:http://blog.csdn.net/l18930738887/article/details/50629409 SSE(和方差.误差平方和):The sum of squares due ...
- 衡量线性回归法的指标MSE, RMSE,MAE和R Square
衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然, ...
- 【笔记】衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square
衡量线性回归法的指标 MSE,RMS,MAE以及评价回归算法 R Square 衡量线性回归法的指标 对于分类问题来说,我们将原始数据分成了训练数据集和测试数据集两部分,我们使用训练数据集得到模型以后 ...
- 线性回归中常见的一些统计学术语(RSE RSS TSS ESS MSE RMSE R2 Pearson's r)
TSS: Total Sum of Squares(总离差平方和) --- 因变量的方差 RSS: Residual Sum of Squares (残差平方和) --- 由误差导致的真实值和估计值 ...
- MSE,RMSE
MSE: Mean Squared Error 均方误差是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度. RMSE ...
- 回归评价指标MSE、RMSE、MAE、R-Squared
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE.R-Squared. MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的 ...
- 机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)
原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如 ...
- SSE技术详解:一种全新的HTML5服务器推送事件技术
前言 一般来说,Web端即时通讯技术因受限于浏览器的设计限制,一直以来实现起来并不容易,主流的Web端即时通讯方案大致有4种:传统Ajax短轮询.Comet技术.WebSocket技术.SSE(Ser ...
随机推荐
- ObjC的initialize和init
Objective-C很有趣的一个地方是,它非常非常像C.实际上,它就是C语言加上一些其他扩展和一个运行时间(runtime). 有了这个在每个Objective-C程序中都会起作用的附加运行时间,给 ...
- Office(Excel、Word)二次开发——VSTO
Office(Excel.Word)二次开发——VSTO Office(Excel.Word)二次开发——VSTO Office二次开发模式: 1) VBA(visual studio for app ...
- fmri 分析数据 fsl & spm 两大平台比对
基于下面这份ppt:Comparing SPM and FSL, by lChris Rorden fsl & spm都是免费的,都很受欢迎.spm更受欢迎. 两者的区别在于何时利用norma ...
- Maven项目管理:SpringMVC+Mybatis+Velocity整合笔记
Maven创建项目 略…具体过程可参考用Maven创建第一个web项目 配置Spring MVC 导入Spring MVC 需要的包在pom.xml 文件下加入: 123456789101112 &l ...
- jQuery 当页面 ID 不唯一时,寻找元素
$(需要寻找元素的父层).find(元素ID,元素Class)
- iOS:触摸事件和手势识别的介绍
触摸事件和手势识别的介绍 1.iOS的输入事件 UIKit可识别三种类型的输入事件: 触摸事件 运动事件 远程控制事件 iOS中许多事件对象都是UIEvent类的实例,UIEvent记录了事件所产生 ...
- 如何打造一款可靠的WAF
之前写了一篇<WAF防御能力评测及工具>,是站在安全运维人员选型WAF产品的角度来考虑的(优先从测试角度考虑是前职业病,毕竟当过3年游戏测试?!).本篇文章从WAF产品研发的角度来YY如何 ...
- scrapy-splash抓取动态数据例子三
一.介绍 本例子用scrapy-splash抓取今日头条网站给定关键字抓取咨询信息. 给定关键字:打通:融合:电视 抓取信息内如下: 1.资讯标题 2.资讯链接 3.资讯时间 4.资讯来源 二.网站信 ...
- IIS 服务器隐藏index.php 的方法
在项目根目录下创建web.config文件 写入以下代码即可 <?xml version="1.0" encoding="UTF-8"?> < ...
- 【android开发】10款实用的Android UI工具,非常有用!
移动应用的UI设计就好似达摩克利斯之剑,一方面,一个视觉.交互.体验良好的UI可以加强应用在用户心目中的形象和识别性.而另一方面,一个体验糟糕的UI设计不仅无法让用户沉浸在应用中,还会造成用户对应用产 ...