hadoop2.7.0实践- WordCount
环境要求
说明:本文档为wordcount的mapreduce job编写及执行文档。
操作系统:Ubuntu14 x64位
Hadoop:Hadoop 2.7.0
Hadoop官网:http://hadoop.apache.org/releases.html
MapReduce參照官网步骤:
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code
本章基于前一篇文章《hadoop2.7.0实践-环境搭建》。
1.安装Eclipse
1)下载eclipse
官网:http://www.eclipse.org/
2)解压eclipse包
$tar -xvf eclipse-jee-mars-R-linux-gtk-x86_64.tar.gz
3)启动eclipse
4)写測试程序
public class TestMore {
public static void main(String[] args) {
System.out.println("hello world!");
System.out.println("I'm so glad to see that");
}
}
2.编写wordcount
1)jar包引入
eclipse的lib中引入的jar包
hadoop包下的share/hadoop下的各个文件夹都有jar包
hadoop-2.7.0/share/hadoop/common/hadoop-common-2.7.0.jar
hadoop-2.7.0/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.7.0.jar
2)编写worcount程序
相应源代码
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
3)导出jar包
取名wc.jar,直接导出到hadoop文件夹下。
3.执行wordcount
1)启动dfs服务
參照文件《hadoop2.7.0实践-环境搭建》。
进入hadoop文件夹,用cd命令。
$sbin/start-dfs.sh
相应查看网页:http://localhost:50070/
2)准备文件
hadoop-2.7.0/wctest/input文件夹中放入待统计文件file01
输入内容:hello world bye world
//创建hdfs文件夹。操作命令相似本地操作
$ bin/hdfs fs -mkdir /user
$ bin/hdfs fs -mkdir /user/a
//复制本地文件到hdfs中
$ bin/hdfs fs -put wctest/input /user/a/input
//备注:相应文件夹删除命令例如以下
delete dir:bin/hadoop fs -rm -f -r /user/a/input
相应文件http://localhost:50070/
3)启动yarn服务
$ sbin/start-yarn.sh
4)执行wordcount程序
$ bin/hadoop jar wc.jar WordCount /user/a/input /user/a/output
5)查看结果
$ bin/hadoop fs -cat /user/a/output/part-r-00000
bye 1
hello 1
world 2
常见错误及说明
1)未启动yarn时执行MapReduce程序
原因:已经配置了yarn,但没有启动引起的
调整:启动一下yarn
$ sbin/start-yarn.sh
hadoop2.7.0实践- WordCount的更多相关文章
- hadoop2.6.0实践:引入开发依赖的jar包
hadoop-2.5.0\share\hadoop\common 所有jar,hadoop-2.5.0\share\hadoop\common\lib 所有jar,hadoop-2.5.0\sha ...
- hadoop2.6.0实践:002 检查伪分布式环境搭建
1.检查网络配置[root@hadoop-master ~]# cat /etc/sysconfig/networkNETWORKING=yesHOSTNAME=hadoop-masterGATEWA ...
- Hadoop2.6.0实践:001 伪分布式环境搭建
##################### Centos6.4VM_01_os.rar ################################################准备工作/opt ...
- hadoop2.6.0实践:004 启动伪分布式hadoop的进程
[hadoop@LexiaofeiMaster hadoop-2.6.0]$ start-dfs.shStarting namenodes on [localhost]localhost: start ...
- 在Linux上编译Hadoop-2.4.0实践与总结
问题导读: 1.编译源码前需要安装哪些软件? 2.安装之后该如何设置环境变量? 3.为什么不要使用JDK1.8? 4.mvn package -Pdist -DskipTests -Dtar的作用是什 ...
- hadoop2.2.0的WordCount程序
package com.my.hadoop.mapreduce.wordcount; import java.io.IOException; import org.apache.hadoop.conf ...
- hadoop2.6.0实践:A02 问题处理 util.NativeCodeLoader: Unable to load native-hadoop library for your platform
############################################################# hadoop "util.NativeCodeLoader: Un ...
- hadoop2.6.0实践:A03 例子验证
[hadoop@LexiaofeiN1 ~]$ hdfs dfs -ls /output/grep[hadoop@LexiaofeiN1 ~]$ hdfs dfs -rm -R /output/gre ...
- hadoop2.6.0实践:A01 问题处理 DEPRECATED: Use of this script to execute hdfs command is deprecated.
[hadoop@hadoop-master data]$ hadoop dfs -ls /DEPRECATED: Use of this script to execute hdfs command ...
随机推荐
- 操作系统介绍、python基础
操作系统 什么是操作系统? 操作系统位于计算机硬件与应用软件之间,是一个协调.管理.控制计算机硬件资源与软件资源的控制程序. 2.为何要操作系统 ① .控制硬件 ② .把对硬件的复杂的操作封装成 ...
- 84. CYD啃骨头(背包问题)
3111 CYD啃骨头 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description CYD吃饭时有N个骨头可以啃,但C ...
- PHP时间戳是10位的,JS时间戳是13位
var dateStr = new Date(time * 1000);
- HDU 4655 Cut Pieces(2013多校6 1001题 简单数学题)
Cut Pieces Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)Total ...
- OE_ORDER_PUB.PROCESS_ORDER to Apply hold on a sales order
PURPOSE: This post is to provide a sample script to Apply hold on a sales order using an API OE_ORDE ...
- iOS:quartz2D绘图(处理图像,绘制图像并添加水印)
绘制图像既可以重写drawRect:方法并在该方法中绘制,也可以不用重写该方法,它有封装好的函数获取自己的图像绘制上下文,即UIGraphicsBeginImageContext(CGSize siz ...
- 流畅的python第十章序列的修改,散列和切片学习记录
只要实现了__len__和__getitem__两个方法即可将该类视为序列. 切片原理 动态存取属性 如果实现了__getattr__方法,也要定义__setattr__方法,以防对象行为不一致
- unity 拿shadowmap/ sample shadow map/拿_ShadowMapTexture
https://gamedev.stackexchange.com/questions/96051/unity-5-how-to-get-a-shadowmap UNITY_DECLARE_SHADO ...
- mysql5.7用户密码策略问题
密码策略问题 ERROR 1819 (HY000): Your password does not satisfy the current policy requirements 查看 mysql 初 ...
- 【转】go语言的字节序
原文:http://lihaoquan.me/2016/11/5/golang-byteorder.html 这个人的博客写的不错,品质也比较高. 我应该也要有这种精神,这种态度.深入到计算机的世界中 ...