题目传送门

  转载自:five20,转载请注明出处

  本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz

  首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减的形式。

  对于一个数x ,我们贪心找到与x 差值最小的斐波拉契数,将新的x 赋为差值,每次进行这个操作,统计次数,直到x 为0 为止,输出次数。

  证明上述过程也很简单:由于我们知道任何整数必能写成多个斐波拉契数加减的形式,所以我们显然使xx 每次变得越小越好(即减的越多越好),因为每个斐波拉契数都等于前面两项的和,所以我们完全没必要将一步操作改为两步操作。

  举个例子:当n=8 ,答案是1 (即8=8 ,8 为第6项),而我们不需要将前面的3,5 什么的记录进去,因为这样会多1 步操作。当n=11 ,答案是2 (即11=8+3 或11=13−2 ),显然不用将8 拆为更小的斐波拉契数之和,也不用将13 拆为更小的斐波拉契数之和,这样必然会徒增次数。

  那么具体实现时,直接预处理斐波拉契数,然后对于每次询问,二分出第一个大于等于该值的位置p ,然后第一个小于该值的值位置p−1 ,则x=min(f[p]−x,x−f[p−1]) 。

  Code:

  

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<iomanip>
#include<algorithm>
using namespace std;
typedef long long ll;
int n,tot;
ll m,f[];
int main()
{
ios::sync_with_stdio(false);
cin>>n;
f[]=f[]=;
for(int i=;i<=;i++)
f[i]=f[i-]+f[i-];
for(int t=;t<=n;t++){
cin>>m;tot=;
while(m){
ll p=lower_bound(f,f+,m)-f;
ll q=p-;
m=min(m-f[q],f[p]-m);
tot++;}
cout<<tot<<endl;
}
return ;
}

洛谷P3539 [POI2012] ROZ-Fibonacci Representation的更多相关文章

  1. 洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告

    P3539 [POI2012]ROZ-Fibonacci Representation 题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来 多组数据10 数据范围1e17 第一次瞬间yy出做法, ...

  2. 洛谷P3533 [POI2012]RAN-Rendezvous

    P3533 [POI2012]RAN-Rendezvous 题目描述 Byteasar is a ranger who works in the Arrow Cave - a famous rende ...

  3. BZOJ2801/洛谷P3544 [POI2012]BEZ-Minimalist Security(题目性质发掘+图的遍历+解不等式组)

    题面戳这 化下题面给的式子: \(z_u+z_v=p_u+p_v-b_{u,v}\) 发现\(p_u+p_v-b_{u,v}\)是确定的,所以只要确定了一个点\(i\)的权值\(x_i\),和它在同一 ...

  4. 洛谷P3538 [POI2012]OKR-A Horrible Poem [字符串hash]

    题目传送门 A Horrible Poem 题目描述 Bytie boy has to learn a fragment of a certain poem by heart. The poem, f ...

  5. 洛谷P3537 [POI2012]SZA-Cloakroom(背包)

    传送门 蠢了……还以为背包只能用来维护方案数呢……没想到背包这么神奇…… 我们用$dp[i]$表示当$c$的和为$i$时,所有的方案中使得最小的$b$最大时最小的$b$是多少 然后把所有的点按照$a$ ...

  6. 洛谷P3531 [POI2012]LIT-Letters

    题目描述 Little Johnny has a very long surname. Yet he is not the only such person in his milieu. As it ...

  7. 洛谷P3534 [POI2012] STU

    题目 二分好题 首先用二分找最小的绝对值差,对于每个a[i]都两个方向扫一遍,先都改成差满足的形式,然后再找a[k]等于0的情况,发现如果a[k]要变成0,则从他到左右两个方向上必会有两个连续的区间也 ...

  8. 【洛谷3546_BZOJ2803】[POI2012]PRE-Prefixuffix(String Hash)

    Problem: 洛谷3546 Analysis: I gave up and saw other's solution when I had nearly thought of the method ...

  9. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

随机推荐

  1. svn稀疏目录--通过设置工作目录的深度(depth)实现目录树的部分签出

    对于一个大的版本库来说,本地工作目录签出整个目录树是即费时又占地儿的.虽然可以只签出某个子目录树,但有时候还是需要从根目录签出.那么,怎么才能只把自己感兴趣的子目录签出来呢? 从svn1.5版开始,提 ...

  2. linux上抓包

    使用tcpdump命令. 使用tcpdump -help查看其用法. -i eth0:在第一块网卡上进行抓包. -w filename.cap:将抓的保存到当前目录下的filename.cap文件中, ...

  3. mysql的数据库 索引

    1.两种主要的引擎:MyISAM和InnoDB 2.如何查看自己的表是什么类型:http://www.cnblogs.com/luosongchao/archive/2013/05/23/309592 ...

  4. CodeBlocks wrong

    codeblocks官网 Q1. 中文乱码 系统是win,用的是codeblocks编辑器,指定的原文件编码是UTF-8 编译后运行,发现中文在控制台里显示全是乱码 A1: 对此有解决办法,通过给g+ ...

  5. C11简洁之道:初始化改进

    1.  C++98/03初始化 我们先来总结一下C++98/03的各种不同的初始化情况: //普通数组 ] = {, , }; //POD(plain old data) struct A { int ...

  6. MSSQL 视图/事务(TRAN[SACTION])/存储过程(PROC[EDURE])/触发器(TRIGGER )

    --视图 视图是一张虚拟表,它表示一张表的部分数据或多张表的综合数据,其结构和数据是建立在对表的查询基础上 视图在操作上和数据表没有什么区别,但两者的差异是其本质是不同: 数据表是实际存储记录的地方, ...

  7. js基础知识点收集

    js基础知识点收集 js常用基本类型 function show(x) { console.log(typeof(x)); // undefined console.log(typeof(10)); ...

  8. Tomcat的安装以及基本配置

    Tomcat是目前最常见也是最流行的基于java的一个web服务器软件   Tomcat的安装   (1)首先需要java环境,也就是说要依赖于java虚拟机JVM   (2)下载Tomcat ,地址 ...

  9. 采用dlopen、dlsym、dlclose加载动态链接库【转】

    转自:http://www.cnblogs.com/Anker/p/3746802.html 1.前言 为了使程序方便扩展,具备通用性,可以采用插件形式.采用异步事件驱动模型,保证主程序逻辑不变,将各 ...

  10. ZOJ 3537 Cake 求凸包 区间DP

    题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...