bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)
题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数。
当时看到这题就想到了某道奶牛题(戳我)。这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走过T边权的方案数。。。所以可以看成奶牛题相当于这一题里的边权为1的情况。
首先边权为1就把奶牛题的floyd那段改成矩乘就可以了,那么接下来考虑边权不为1的情况,因为边权最多为9,我们就可以把每个点拆成9个点,x[1]~x[9]为x拆完的点,x[i]和x[i+1]连一条边权为1的边,然后x到y有一条边权为z的边,那么就把x的第z个点往y的第1个点连一条边,当然也可以把x[i]和x[i-1]连边然后把x的第一个点往y的第z个点连边,都是等价的,因为x跑到y第z个点再跑回y和x跑z个点再到y所走过的都是z个点。然后跑矩乘就可以辣。
代码如下:
type
map=array[..,..]of longint;
var
n,m,t,i,j,x:longint;
ch:char;
mapp,a:map; function pos(i,j:longint):longint;
begin
exit((j-)*m+i);
end; procedure merge(var x,y:map);
var
i,j,k:longint;
z:map;
begin
fillchar(z,sizeof(z),);
for i:= to n do
for j:= to n do
for k:= to n do
z[i,j]:=(z[i,j]+x[i,k]*y[k,j])mod ;
x:=z;
end; procedure qp(y:longint);
var
x:map;
begin
x:=mapp;
while y> do
begin
if y and = then merge(a,x);
merge(x,x);
y:=y>>;
end;
end; begin
readln(m,t);
n:=m*;
for i:= to m do
for j:= to do
mapp[pos(i,j),pos(i,j+)]:=;
for i:= to m do
begin
for j:= to m do
begin
read(ch);x:=ord(ch)-ord('');
if x= then continue;
mapp[pos(i,x),j]:=;
end;
readln;
end;
for i:= to n do
a[i,i]:=;
qp(t);
writeln(a[,m]);
end.
bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)的更多相关文章
- BZOJ1297 [SCOI2009]迷路 矩阵乘法
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...
- 【bzoj1297】[SCOI2009]迷路 矩阵乘法
题目描述 给出一个 $n$ 个点的有向图,每条边的权值都在 $[1,9]$ 之间.给出 $t$ ,求从 $1$ 到 $n$ ,经过路径边权和恰好为 $t$ 的方案数模2009. 输入 第一行包含两个整 ...
- [luogu4159 SCOI2009] 迷路(矩阵乘法)
传送门 Solution 矩阵乘法新姿势qwq 我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数 那么对于边权很小的时候,我们可以将每个点都拆成若干个点 然后就将边权不为1转化为边权为1了 ...
- LUOGU P4159 [SCOI2009]迷路(矩阵乘法)
传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...
- BZOJ1297: [SCOI2009]迷路 矩阵快速幂
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1385 Solved: 993[Submit][Status] ...
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [SCOI2009]迷路(矩阵快速幂) 题解
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...
- bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...
随机推荐
- Appium安装教程
一.适用操作系统Win7 旗舰版Sp1 64位操作系统 或 32位操作系统二.所需软件jdk-7u45-windows-i586.exenode-v0.10.28-x86.msi (32位)下载地址: ...
- 第五模块:WEB开发基础 第2章·JavaScript基础
01-JavaScript的历史发展过程 02-js的引入方式和输出 03-命名规范和变量的声明定义 04-五种基本数据类型 05-运算符 06-字符串处理 07-数据类型转换 08-流程控制语句if ...
- 博客美化—添加萌萌的live2D看板娘(不能再简单了)
看着很多博客都有live2D的萌萌哒看板娘,我闲着有空说干就干. 从参考博客的附件中下载资源文件 waifu.css waifu-tips.js live2d.js flat-ui.min.css// ...
- Navicat和DBeaver的查询快捷键
1.Navicat for MySQL(连接MySQL数据库的工具) ctrl + r 执行查询页中所有的sql语句 ctrl + shift + r 只运行选中的sql语句 2.DBeaver(支持 ...
- CSP201609-1:最大波动
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- LeetCode 700——二叉搜索树中的搜索
1. 题目 2. 解答 如果根节点为空,直接返回 NULL.如果根节点非空,从根节点开始循环查找,直到节点为空. 如果待查找的值大于当前节点值,节点指向右孩子: 如果待查找的值小于当前节点值,节点指向 ...
- AttributeError: 'TimeLimit' object has no attribute 'monitor'
原报错代码部分: env.monitor.start(monitor_path, resume=True, video_callable=lambda count: count % record_vi ...
- C语言实验——时间间隔
Description 从键盘输入两个时间点(24小时制),输出两个时间点之间的时间间隔,时间间隔用“小时:分钟:秒”表示. 如:3点5分25秒应表示为--03:05:25.假设两个时间在同一天内,时 ...
- python获取指定长度的字符串
from random import Random def random_str(randomlength=31): str = '' chars = 'abcdefghijklmnopqrstuvw ...
- 原生js操作Dom节点:CRUD
知识点,依然会遗忘.我在思考到底是什么原因.想到研究生考试准备的那段岁月,想到知识体系的建立,知识体系分为正向知识体系和逆向知识体系:正向知识体系可以理解为教科书目录,逆向知识体系可以理解考试真题. ...