题目大意:有向图里10个点,点与点之间距离不超过9,问从1刚好走过T距离到达n的方案数。

  当时看到这题就想到了某道奶牛题(戳我)。这两道题的区别就是奶牛题问的是走T条边,这道题是每条边都有一个边权求走过T边权的方案数。。。所以可以看成奶牛题相当于这一题里的边权为1的情况。

首先边权为1就把奶牛题的floyd那段改成矩乘就可以了,那么接下来考虑边权不为1的情况,因为边权最多为9,我们就可以把每个点拆成9个点,x[1]~x[9]为x拆完的点,x[i]和x[i+1]连一条边权为1的边,然后x到y有一条边权为z的边,那么就把x的第z个点往y的第1个点连一条边,当然也可以把x[i]和x[i-1]连边然后把x的第一个点往y的第z个点连边,都是等价的,因为x跑到y第z个点再跑回y和x跑z个点再到y所走过的都是z个点。然后跑矩乘就可以辣。

代码如下:

type
map=array[..,..]of longint;
var
n,m,t,i,j,x:longint;
ch:char;
mapp,a:map; function pos(i,j:longint):longint;
begin
exit((j-)*m+i);
end; procedure merge(var x,y:map);
var
i,j,k:longint;
z:map;
begin
fillchar(z,sizeof(z),);
for i:= to n do
for j:= to n do
for k:= to n do
z[i,j]:=(z[i,j]+x[i,k]*y[k,j])mod ;
x:=z;
end; procedure qp(y:longint);
var
x:map;
begin
x:=mapp;
while y> do
begin
if y and = then merge(a,x);
merge(x,x);
y:=y>>;
end;
end; begin
readln(m,t);
n:=m*;
for i:= to m do
for j:= to do
mapp[pos(i,j),pos(i,j+)]:=;
for i:= to m do
begin
for j:= to m do
begin
read(ch);x:=ord(ch)-ord('');
if x= then continue;
mapp[pos(i,x),j]:=;
end;
readln;
end;
for i:= to n do
a[i,i]:=;
qp(t);
writeln(a[,m]);
end.

bzoj1297: [SCOI2009]迷路(矩阵乘法+拆点)的更多相关文章

  1. BZOJ1297 [SCOI2009]迷路 矩阵乘法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1297 题意概括 有向图有 N 个节点,从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. ...

  2. 【bzoj1297】[SCOI2009]迷路 矩阵乘法

    题目描述 给出一个 $n$ 个点的有向图,每条边的权值都在 $[1,9]$ 之间.给出 $t$ ,求从 $1$ 到 $n$ ,经过路径边权和恰好为 $t$ 的方案数模2009. 输入 第一行包含两个整 ...

  3. [luogu4159 SCOI2009] 迷路(矩阵乘法)

    传送门 Solution 矩阵乘法新姿势qwq 我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数 那么对于边权很小的时候,我们可以将每个点都拆成若干个点 然后就将边权不为1转化为边权为1了 ...

  4. LUOGU P4159 [SCOI2009]迷路(矩阵乘法)

    传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...

  5. BZOJ1297: [SCOI2009]迷路 矩阵快速幂

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  6. [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1385  Solved: 993[Submit][Status] ...

  7. 【矩阵快速幂】bzoj1297 [SCOI2009]迷路

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1407  Solved: 1007[Submit][Status ...

  8. [SCOI2009]迷路(矩阵快速幂) 题解

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  9. bzoj1297 [SCOI2009]迷路——拆点+矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1297 一看感觉是矩阵快速幂之类的,但边权不好处理啊: 普通的矩阵快速幂只能处理边权为1的,所 ...

随机推荐

  1. 对网页进行截图(selenium)

    import os def insert_img(driver,file_name): #获取当前路径,并转换为字符串 base_dir=str(os.path.dirname(__file__)) ...

  2. APP功能性测试-2

    安装与卸载 应用是否可以在不同的安卓版本上安装(过低不能适配) 安装后是否可以正常运行 安装空间不足时是否有相应提示 如果应用需要通过网络验证之类的安装,需要测试一下断网情况下是否有相应提示 安装过程 ...

  3. lintcode12 带最小值操作的栈

    实现一个带有取最小值min方法的栈,min方法将返回当前栈中的最小值. 你实现的栈将支持push,pop 和 min 操作,所有操作要求都在O(1)时间内完成. 建一个栈helpStack,用来存放从 ...

  4. spark-shell解析

    spark-shell 作用: 调用spark-submit脚本,如下参数 --classorg.apache.spark.repl.Main --name "Spark shell&quo ...

  5. docker 命令笔记

    docker images 查看镜像 docker search 查找镜像 docker pull 拉取镜像 docker push 推送镜像 docker ps 查看正在运行的容器 docker p ...

  6. Struts2中Action各种转发类型

    Struts2:Action中result的各种转发类型: 内部请求转发dispatcher(默认值) redirect.redirectAction.plainText1.redirect是重定向到 ...

  7. 6.azkban的监控

    azkaban自带的监控flow自带的邮件功能SLA总结写程序监控job情况监控azkaban的元数据库使用azkaban API监控总结 azkaban自带的监控 azkban目前仅仅支持邮件监控, ...

  8. 一次大量TIME_WAIT和Recv-Q 堵塞问题排查思路

    记录一下周末出现问题~     仅自己摘记不做任何参考. 第一天故障: 现象: 公司销售群和售后群炸了,说老后台(1.0版本)崩溃了,因为还有部门的业务没来得及迁移到新后台,我当时正在打农药哈哈~ 后 ...

  9. 关于css的总结

    写在前面  ,学好css,需要长期的推敲和积累  ,细节是不断完善的,逐渐形成自己的风格    让自己的css更加接近优雅. 下面来总结一些我觉得比较好的css代码风格 : 1. 一般网页中的背景 用 ...

  10. c#事件实质

    c#的事件实际上是对windows消息的封装: windows消息系统分为3部分:消息队列,消息循环,窗口过程(wndproc函数)