BZOJ2924 [Poi1998]Flat broken lines 【Dilworth定理 + 树状数组】
题目链接
题解
题面有误。。是\(45°\)
如果两个点间连线与\(x\)轴夹角在\(45°\)以内,那么它们之间连边
求最小路径覆盖 = 最长反链
由于\(45°\)比较难搞,我们利用复数翻转一下,逆时针旋转\(45°\)
这样就求一条从左上到右下的最长链
我们将所有点按\(x\)排序,令\(f[i]\)表示\(i\)结尾的最长链
那么
\]
离散化一下用树状数组优化
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 30005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct point{
double x,y; int d;
}p[maxn];
inline bool operator <(const point& a,const point& b){
return a.x == b.x ? a.d < b.d : a.x < b.x;
}
int n,tot;
double b[maxn];
inline int getn(double x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
int s[maxn],f[maxn];
void modify(int u,int v){while (u) s[u] = max(s[u],v),u -= lbt(u);}
int query(int u){int re = 0; while (u <= n) re = max(re,s[u]),u += lbt(u); return re;}
int main(){
n = read(); double x,y,s2 = sqrt(2) / 2.0;
REP(i,n){
x = read(); y = read();
p[i] = (point){s2 * (x - y),s2 * (x + y)};
b[i] = p[i].y;
}
sort(b + 1,b + 1 + n); tot = 1;
for (int i = 2; i <= n; i++) if (b[i] != b[tot]) b[++tot] = b[i];
for (int i = 1; i <= n; i++) p[i].d = getn(p[i].y);
sort(p + 1,p + 1 + n); int ans = 0;
for (int i = 1; i <= n; i++){
f[i] = query(p[i].d + 1) + 1;
modify(p[i].d,f[i]);
ans = max(ans,f[i]);
}
printf("%d\n",ans);
return 0;
}
BZOJ2924 [Poi1998]Flat broken lines 【Dilworth定理 + 树状数组】的更多相关文章
- BZOJ2924 : [Poi1998]Flat broken lines
首先旋转坐标系 $x'=x-y$ $y'=-x-y$ 则对于一个点,它下一步可以往它左上角任意一个点连线. 根据Dilworth定理,答案=这个偏序集最长反链的长度. 设f[i]为到i点为止的最长反链 ...
- TOJ 4105 Lines Counting (树状数组)
题意:给定N条线段,每条线段的两个端点L和R都是整数.然后给出M个询问,每次询问给定两个区间[L1,R1]和[L2,R2],问有多少条线段满足:L1≤L≤R1 , L2≤R≤R2 ? 题解,采用离线做 ...
- 【BZOJ】2924: [Poi1998]Flat broken lines
题意 平面上有\(n\)个点,如果两个点的线段与\(x\)轴的角在\([-45^{\circ}, 45^{\circ}]\),则两个点可以连线.求最少的折线(折线由线段首尾相连)使得覆盖所有点. 分析 ...
- 【XSY2727】Remove Dilworth定理 堆 树状数组 DP
题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...
- 【十分不错】【离线+树状数组】【TOJ4105】【Lines Counting】
On the number axis, there are N lines. The two endpoints L and R of each line are integer. Give you ...
- TOJ 4105 Lines Counting(离线树状数组)
4105. Lines Counting Time Limit: 2.0 Seconds Memory Limit: 150000K Total Runs: 152 Accepted Ru ...
- UVA - 1471 Defense Lines 树状数组/二分
Defense Lines After the last war devastated your country, you - as the ...
- uva 12356 Army Buddies 树状数组解法 树状数组求加和恰为k的最小项号 难度:1
Nlogonia is fighting a ruthless war against the neighboring country of Cubiconia. The Chief General ...
- codeforces 597C C. Subsequences(dp+树状数组)
题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...
随机推荐
- 浅析Win8/8.1下安装SQL Server 2005 出现服务项无法正常启动解决方案
如何才能在微软最新的Windows8/Windows 8.1下正常使用SQL Server 2005套件呢?下面就简单介绍利用文件替换法,解决其服务项无法正常启动的临时方案.当然还是建议使用SQL S ...
- 关于Python 中的 if 语句
学习Python,最开始我们都是先从函数学起,Python教程中有很多函数,if算是其中之一. 可能最为人所熟知的编程语句就是 if 语句了.例如: >>> >>> ...
- 【WXS】简要介绍说明
WXS(WeiXin Script)是小程序的一套脚本语言. WXS有二种写法: 1) 以<wxs>标签书写脚本: 语法: <wxs module="[String]&qu ...
- Vuejs 实现简易 todoList 功能 与 组件
todoList 结合之前 Vuejs 基础与语法 使用 v-model 双向绑定 input 输入内容与数据 data 使用 @click 和 methods 关联事件 使用 v-for 进行数据循 ...
- Bootstrap框架(图标)
Glyphicons 字体图标 所有可用的图标 包括250多个来自 Glyphicon Halflings 的字体图标.Glyphicons Halflings 一般是收费的,但是他们的作者允许 Bo ...
- 2018Java研发实习内推
作者:sdu王镜鑫链接:https://www.nowcoder.com/discuss/74573?type=0&order=4&pos=7&page=1来源:牛客网 本人某 ...
- 机器人控制tcp通信参数调优
机器人使用WiFi通信,实现指令下传,状态上传.而WiFi信道平时带宽较稳定,但会在某些时候突然中断,造成ping的延时较高,但可以马上恢复.如果一直ping,则一般情况下ping值很小,但长时间(数 ...
- SFTP服务器之创建普通用户
这篇博客主要写以下几点: 1.介绍SFTP服务器 2.用SFTP服务器的root用户a创建普通用户 3.修改普通用户名称以及默认登入时的目录名称 4.创建普通用户踩过的坑以及收获 一.介绍SFTP服务 ...
- Android 网络编程 API笔记 - java.net 包 权限 地址 套接字 相关类 简介
Android 网络编程相关的包 : 9 包, 20 接口, 103 类, 6 枚举, 14异常; -- Java包 : java.net 包 (6接口, 34类, 2枚举, 12异常); -- An ...
- Spring管理事务默认回滚的异常
一.默认方式 Spring的事务管理默认只对出现运行期异常(java.lang.RuntimeException及其子类),Error进行回滚. 如果一个方法抛出Exception或者Checked异 ...