1046: [HAOI2007]上升序列

Time Limit: 10 Sec  Memory Limit: 162 MB

Submit: 5410  Solved: 1877

[Submit][Status][Discuss]

Description

  对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ax

2 < … < axm)。那么就称P为S的一个上升序列。如果有多个P满足条件,那么我们想求字典序最小的那个。任务给

出S序列,给出若干询问。对于第i个询问,求出长度为Li的上升序列,如有多个,求出字典序最小的那个(即首先

x1最小,如果不唯一,再看x2最小……),如果不存在长度为Li的上升序列,则打印Impossible.

Input

  第一行一个N,表示序列一共有N个元素第二行N个数,为a1,a2,…,an 第三行一个M,表示询问次数。下面接M

行每行一个数L,表示要询问长度为L的上升序列。N<=10000,M<=1000

Output

  对于每个询问,如果对应的序列存在,则输出,否则打印Impossible.

Sample Input

6

3 4 1 2 3 6

3

6

4

5

Sample Output

Impossible

1 2 3 6

Impossible

LIS的nlogn算法又用上了,但还是很不熟练

问题要我们算出字典序最小的方案

我们可以根据f[i]用O(n)的复杂度直接扫一遍,当前f[i]还在所求范围内而且A[i]满足条件就输出,保证了字典序最小

总的O(nlogn + nm)不会爆

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int A[maxn],f[maxn],bac[maxn],pos[maxn],pre[maxn],ans[maxn],n,len = 0;
int main(){
n = RD();
REP(i,n) A[i] = RD();
for (int i = n; i > 0; i--){
int l = 0,r = len,mid;
while (l < r){
mid = l + r + 1 >> 1;
if (bac[mid] && A[bac[mid]] > A[i]) l = mid;
else r = mid - 1;
}
f[i] = l + 1; pre[i] = bac[l];
if (!bac[f[i]] || A[i] > A[bac[f[i]]]) bac[f[i]] = i;
len = max(len,f[i]);
}
int m = RD(),v,last,first;
while (m--){
v = RD();
if (v > len) printf("Impossible\n");
else {
last = 0; first = true;
for (int i = 1; i <= n; i++)
if (f[i] >= v && A[i] > last){
if (first) first = false; else printf(" ");
printf("%d",A[i]);
last = A[i]; v--;
if (!v) break;
}
printf("\n");
}
}
return 0;
}

BZOJ1046 [HAOI2007]上升序列 【LIS + 字典序最小】的更多相关文章

  1. BZOJ1046: [HAOI2007]上升序列(LIS)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5740  Solved: 2025[Submit][Status][Discuss] Descript ...

  2. bzoj1046 [HAOI2007]上升序列——LIS

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1046 倒序求最长下降子序列,则得到了每个点开始的最长上升子序列: 然后贪心输出即可. 代码如 ...

  3. BZOJ 1046: [HAOI2007]上升序列 LIS -dp

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Stat ...

  4. BZOJ 1046: [HAOI2007]上升序列(LIS)

    题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ----------------------------------- ...

  5. BZOJ1046 [HAOI2007]上升序列

    Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...

  6. 2014.8.15模拟赛【公主的工作】&&bzoj1046[HAOI2007]上升序列

    bzoj题目是这样的 Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm ...

  7. [BZOJ1046] [HAOI2007] 上升序列 (dp)

    Description 对于一个给定的S={a1,a2,a3,…,an},若有P={ax1,ax2,ax3,…,axm},满足(x1 < x2 < … < xm)且( ax1 < ...

  8. BZOJ 1046 [HAOI2007]上升序列(LIS + 贪心)

    题意: m次询问,问下标最小字典序的长度为x的LIS是什么 n<=10000, m<=1000 思路: 先nlogn求出f[i]为以a[i]开头的LIS长度 然后贪心即可,复杂度nm 我们 ...

  9. 【动态规划】【最长上升子序列】【贪心】bzoj1046 [HAOI2007]上升序列

    nlogn求出最长上升子序列长度. 对每次询问,贪心地回答.设输入为x.当前数a[i]可能成为答案序列中的第k个,则若 f[i]>=x-k && a[i]>ans[k-1] ...

随机推荐

  1. andriod学习二 设置开发环境

    1.官方环境搭建步骤     http://developer.android.com/sdk/installing/index.html         包括:下载JDK6,Eclipse 3.6, ...

  2. 分布式部署Apache-Jmeter粗略流程

    注意事项 Windows版和Mac版Jmeter可互相通信 确认被部署的机器安装有JDK并已配置好环境变量 Controller安装 1. 安装Jmeter,监视插件JMeterPlugins-Sta ...

  3. Charles使用及mock数据

    1.下载charles 3.9.2[破解版地址:https://download.csdn.net/my] 下方有一种方法可破解4.2以前的版本 // Charles Proxy License // ...

  4. BFC与合并 浅析

    BFC BFC 全称 Block Formatting Context.每个渲染区域用formatting context表示,它决定了其子元素将如何定位,以及和其他元素的关系和相互作用在正常流中的盒 ...

  5. docker学习2

    今天继续学习docker! 搜索镜像 docker search centos 下载镜像 docker pull name(镜像名字) 查看镜像docker images 字段含义分析: TAG:仓库 ...

  6. vista x64 vs2010 win32添加资源 未能完成操作解决办法

    非常痛苦的感觉,不能用vc6,msdn library也不好用,去2k3系统试了下,没有任何问题,无奈想重装系统了,但是太浪费时间,装了虚拟机也是vistax64的,安装之后正常... 卸载重新安装依 ...

  7. CMD Markdown basic & Math Cheatsheet

    CMD Markdown basic & Math Cheatsheet I am using CMD Markdown both at work and for study.You can ...

  8. Paper Reading - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ( ICML 2015 )

    Link of the Paper: https://arxiv.org/pdf/1502.03044.pdf Main Points: Encoder-Decoder Framework: Enco ...

  9. Java动态代码模式

    java动态代理(JDK和cglib) JAVA的动态代理 代理模式 代理模式是常用的java设计模式,他的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委 ...

  10. Android屏幕适配解析 - 详解像素,设备独立像素,归一化密度,精确密度及各种资源对应的尺寸密度分辨率适配问题

    . 作者 :万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/19698511 . 最近遇到了一系列的屏幕适配问题, 以及 ...