\[Preface
\]

没有 Preface。

\[Description
\]

维护一个长度为 \(n\) 的数列 \(A\) ,需要支持以下操作:

  • 0 x y 将 \(A_x\) 改为 \(y\) 。

  • 1 x y 求 \(\max\limits_{x \leq l \leq r \leq y}{\sum_{i=l}^rA[i]}\) 。

\[Solution
\]

区间最大子段和 是一个非常经典的问题。

对于 整体最大子段和 来说,一般有 \(O(n)\) 的 贪心分治 做法,我们讨论的重点是 分治 做法。

\(~\)

假设当前需求解最大子段和的区间是 \([l,r]\) ,令 \(mid=\left\lfloor\dfrac{l+r}{2}\right\rfloor\)

我们套路地把 \([l,r]\) 分成 \([l,mid]\) 和 \([mid+1,r]\) ,来进行分治求解:

\(~\)

首先对于形如 \([l,l]\) 的区间,就十分好处理了,这里不多说。

\(~\)

接下来,考虑下最大子段和满不满足 区间可加性 ?(\([l,mid]\) 和 \([mid+1,r]\) 的最大子段和能否推至 \([l,r]\))

显然,只维护一个最大子段和,对 左子区间右子区间 的最大子段和取个 \(\max\) 是不能维护最大子段和的,因为其漏掉了 最大子段和同时包含左子区间和右子区间 的情况。

那么对于剩下的这一种情况,它是必定经过中点 \(mid\) 的,那这种情况的最大段就是 左子区间从右端点向左走的最大段右子区间从左端点向右走的最大段 的并集,其值为 左子区间的后缀最大子段和 \(+\) 右子区间的前缀最大字段和

那我们再维护 前 \(/\) 后 缀最大子段和 ,对其三者取 \(\max\) ,最大子段和就满足区间可加性了。

维护 前 \(/\) 后 缀最大子段和 依旧可以分成 经过 \(mid\) \(/\) 不经过 \(mid\) 来讨论。

以前缀最大子段和为例,若经过 \(mid\) ,则最大段为 左子区间右子区间从左端点向右走的最大段 的并集,其值为 左子区间和 \(+\) 右子区间的前缀最大子段和 ;若不经过 \(mid\) ,则最大段为 左子区间从左端点向右走的最大段 。二者取个 \(\max\) 即可。后缀最大子段和同理。

那我们再维护个 区间和 ,那 最大子段和前 \(/\) 后 缀最大子段和 就都满足区间可加性了。

至于 区间和 \(......\) ,这玩意直接加就行了。

(上述内容大家可以自己画图感性理解一下

\(~\)

求解过程

约定变量:

\(sum\) : 区间和

\(lmax\) : 区间前缀最大子段和

\(rmax\) : 区间后缀最大子段和

\(wmax\) : 区间最大子段和

设函数 \(ask(l,r)\) 求的是关于区间 \([l,r]\) 的一个四元组\((\) \(sum\), \(lmax\), \(rmax\), \(wmax\) \()\)

首先有一个递归边界 \(l=r\) ,此时这四个元素均为 \(A_l\) 。

那对于一般情况,令 \(lc=ask(l,mid),rc=ask(mid+1,r)\) ,则有:

\[self.sum=lc.sum+rc.sum
\]

\[self.lmax=\max(lc.lmax,lc.sum+rc.lmax)
\]

\[self.rmax=\max(rc.rmax,rc.sum+lc.rmax)
\]

\[self.wmax=\max(lc.wmax,rc.wmax,lc.rmax+rc.lmax)
\]

此时 \(self\) 即为 \(ask(l,r)\) 。

struct data{
int sum;
int lmax;
int rmax;
int wmax;
}; data ask(int l,int r)
{
data self;
if(l==r)
{
self.sum=self.lmax=self.rmax=self.wmax=A[l];
return self;
}
int mid=(l+r)/2;
data lc=ask(l,mid),rc=ask(mid+1,r);
self.sum=lc.sum+rc.sum;
self.lmax=max(lc.lmax,lc.sum+rc.lmax);
self.rmax=max(rc.rmax,rc.sum+lc.rmax);
self.wmax=max(max(lc.wmax,rc.wmax),lc.rmax+rc.lmax);
return self;
}

\(~\)

然后你会发现,若对于每个询问都调用一次 ask(l,r) 会稳稳 T 掉

那我 bb 这么多有什么用呢

大家仔细想想,这个分治的过程像不像某个数据结构呢?

线段树?

线段树!

是的,用线段树维护,每个节点保存的是该节点所代表的区间 \([l,r]\) 的 \((\) \(sum\), \(lmax\), \(rmax\), \(wmax\) \()\) 。

剩下的都是一些线段树基本操作了。

\[Code
\]

#include<cstdio>
#include<algorithm> #define RI register int using namespace std; const int SIZE=500100; int n,m;
int a[SIZE]; struct SegmentTree{
int l,r;
int sum;
int lmax;
int rmax;
int dat;
}t[SIZE*4]; void build(int p,int l,int r)
{
t[p].l=l;t[p].r=r;
if(l==r){t[p].sum=t[p].lmax=t[p].rmax=t[p].dat=a[l];return;}
int mid=(l+r)/2;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].sum=t[p*2].sum+t[p*2+1].sum;
t[p].lmax=max(t[p*2].lmax,t[p*2].sum+t[p*2+1].lmax);
t[p].rmax=max(t[p*2+1].rmax,t[p*2+1].sum+t[p*2].rmax);
t[p].dat=max(max(t[p*2].dat,t[p*2+1].dat),t[p*2].rmax+t[p*2+1].lmax);
} void change(int p,int x,int val)
{
if(t[p].l==t[p].r){t[p].sum=t[p].lmax=t[p].rmax=t[p].dat=val;return;}
int mid=(t[p].l+t[p].r)/2;
if(x<=mid)change(p*2,x,val);
else change(p*2+1,x,val);
t[p].sum=t[p*2].sum+t[p*2+1].sum;
t[p].lmax=max(t[p*2].lmax,t[p*2].sum+t[p*2+1].lmax);
t[p].rmax=max(t[p*2+1].rmax,t[p*2+1].sum+t[p*2].rmax);
t[p].dat=max(max(t[p*2].dat,t[p*2+1].dat),t[p*2].rmax+t[p*2+1].lmax);
} SegmentTree ask(int p,int l,int r)
{
if(l<=t[p].l&&t[p].r<=r)return t[p];
int mid=(t[p].l+t[p].r)/2;
if(l<=mid&&mid<r)
{
SegmentTree lc=ask(p*2,l,r),rc=ask(p*2+1,l,r),self;
self.sum=self.lmax=self.rmax=self.dat=0;
self.sum=lc.sum+rc.sum;
self.lmax=max(lc.lmax,lc.sum+rc.lmax);
self.rmax=max(rc.rmax,rc.sum+lc.rmax);
self.dat=max(max(lc.dat,rc.dat),lc.rmax+rc.lmax);
return self;
}
if(l<=mid)
return ask(p*2,l,r);
if(mid<r)
return ask(p*2+1,l,r);
} int main()
{
scanf("%d",&n);
for(RI i=1;i<=n;i++)
scanf("%d",&a[i]); build(1,1,n); scanf("%d",&m); while(m--)
{
char op[2];
int l,r;
scanf("%s%d%d",op,&l,&r); switch(op[0])
{
case '1':{
if(l>r)swap(l,r);
printf("%d\n",ask(1,l,r).dat);
break;
} case '0':{
change(1,l,r);
break;
}
}
}
return 0;
}

\[Thanks \ for \ watching
\]

题解 SP1716 【GSS3 - Can you answer these queries III】的更多相关文章

  1. 线段树 SP1716 GSS3 - Can you answer these queries III

    SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...

  2. SP1716 GSS3 - Can you answer these queries III 线段树

    问题描述 [LG-SP1716](https://www.luogu.org/problem/SP1716] 题解 GSS 系列的第三题,在第一题的基础上带单点修改. 第一题题解传送门 在第一题的基础 ...

  3. SP1716 GSS3 - Can you answer these queries III

    题面 题解 相信大家写过的传统做法像这样:(这段代码蒯自Karry5307的题解) struct SegmentTree{ ll l,r,prefix,suffix,sum,maxn; }; //.. ...

  4. SP1716 GSS3 - Can you answer these queries III(单点修改,区间最大子段和)

    题意翻译 nnn 个数, qqq 次操作 操作0 x y把 AxA_xAx​ 修改为 yyy 操作1 l r询问区间 [l,r][l, r][l,r] 的最大子段和 题目描述 You are give ...

  5. SP1716 GSS3 - Can you answer these queries III - 动态dp,线段树

    GSS3 Description 动态维护最大子段和,支持单点修改. Solution 设 \(f[i]\) 表示以 \(i\) 为结尾的最大子段和, \(g[i]\) 表示 \(1 \sim i\) ...

  6. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  7. 数据结构(线段树):SPOJ GSS3 - Can you answer these queries III

    GSS3 - Can you answer these queries III You are given a sequence A of N (N <= 50000) integers bet ...

  8. 题解【SP1716】GSS3 - Can you answer these queries III

    题目描述 You are given a sequence \(A\) of \(N (N <= 50000)\) integers between \(-10000\) and \(10000 ...

  9. 【SP1716】GSS3 - Can you answer these queries III(动态DP)

    题目链接 之前用线段树写了一遍,现在用\(ddp\)再写一遍. #include <cstdio> #define lc (now << 1) #define rc (now ...

随机推荐

  1. WPF 添加提示动画

    下面放一张效果图: 那么具体是怎么实现呢: 前端XAML中: <Image Source="/Images/tips.png" HorizontalAlignment=&qu ...

  2. react 表单(受控组件和非受控组件)

    我们知道表单元素与其他的普通DOM元素来说是不一样的,它们保存了自己的一些状态. 我们主要说的就是表单元素中的受控组件和非受控组件. 受控组件就是这个组件的状态是我们(react)控制的,这个组件的行 ...

  3. asp.net core 3.x 通用主机是如何承载asp.net core的-上

    一.前言 上一篇<asp.net core 3.x 通用主机原理及使用>扯了下3.x中的通用主机,刚好有哥们写了篇<.NET Core 3.1和WorkerServices构建Win ...

  4. windows I/O设备

    当外部设备连接到windows后,设备所连接到的集线器驱动程序将为设备分配硬件ID,然后Windows 使用硬件 Id 查找设备与包含设备驱动程序的驱动程序包之间最近的匹配项. 如果查找到,设备就可以 ...

  5. MySql查看修改l时区

    # 查看时区 show variables like '%time_zone%'; # 设置全局 set global time_zone='+8:00';  # 设置当前会话 set time_zo ...

  6. Linux下安装JDK 1.8

    前言 JDK是 JAVA 的软件开发工具包,如果要使用JAVA来进行开发,或者部署基于其开发的应用,那么就需要安装JDK.本次将在Linux下安装JDK及配置环境. 本人环境:CentOS 7.3 6 ...

  7. Java入门 - 高级教程 - 01.数据结构

    原文地址:http://www.work100.net/training/java-data-structure.html 更多教程:光束云 - 免费课程 数据结构 序号 文内章节 视频 1 概述 2 ...

  8. 代码审计之CVE-2018-7600-Drupal远程代码执行漏洞-Render API

    今天学习一下Drupal的另一个漏洞,由于渲染数组不当造成的漏洞 poc: url:http://localhost/drupal-8.5.0/user/register?element_parent ...

  9. Identity 4 -1创建一个登录中心

    准备知识 官网地址:https://identityserver4.readthedocs.io/ 通过nuget安装 Identity Server4

  10. UVA A Spy in the Metro

    点击打开题目 题目大意: 在一个有n个站台的地铁线路里,给你列车通向每相邻两个车站所花费的时间,从0时刻开始,从1号站出发,要在T这个时间点上,到达n号站,给你m1辆从1开到n的列车及其出发时间,和m ...