题解 SP1716 【GSS3 - Can you answer these queries III】
\]
没有 Preface。
\]
维护一个长度为 \(n\) 的数列 \(A\) ,需要支持以下操作:
0 x y
将 \(A_x\) 改为 \(y\) 。1 x y
求 \(\max\limits_{x \leq l \leq r \leq y}{\sum_{i=l}^rA[i]}\) 。
\]
区间最大子段和 是一个非常经典的问题。
对于 整体最大子段和 来说,一般有 \(O(n)\) 的 贪心 和 分治 做法,我们讨论的重点是 分治 做法。
\(~\)
假设当前需求解最大子段和的区间是 \([l,r]\) ,令 \(mid=\left\lfloor\dfrac{l+r}{2}\right\rfloor\)
我们套路地把 \([l,r]\) 分成 \([l,mid]\) 和 \([mid+1,r]\) ,来进行分治求解:
\(~\)
首先对于形如 \([l,l]\) 的区间,就十分好处理了,这里不多说。
\(~\)
接下来,考虑下最大子段和满不满足 区间可加性 ?(\([l,mid]\) 和 \([mid+1,r]\) 的最大子段和能否推至 \([l,r]\))
显然,只维护一个最大子段和,对 左子区间 和 右子区间 的最大子段和取个 \(\max\) 是不能维护最大子段和的,因为其漏掉了 最大子段和同时包含左子区间和右子区间 的情况。
那么对于剩下的这一种情况,它是必定经过中点 \(mid\) 的,那这种情况的最大段就是 左子区间从右端点向左走的最大段 与 右子区间从左端点向右走的最大段 的并集,其值为 左子区间的后缀最大子段和 \(+\) 右子区间的前缀最大字段和 。
那我们再维护 前 \(/\) 后 缀最大子段和 ,对其三者取 \(\max\) ,最大子段和就满足区间可加性了。
维护 前 \(/\) 后 缀最大子段和 依旧可以分成 经过 \(mid\) \(/\) 不经过 \(mid\) 来讨论。
以前缀最大子段和为例,若经过 \(mid\) ,则最大段为 左子区间 与 右子区间从左端点向右走的最大段 的并集,其值为 左子区间和 \(+\) 右子区间的前缀最大子段和 ;若不经过 \(mid\) ,则最大段为 左子区间从左端点向右走的最大段 。二者取个 \(\max\) 即可。后缀最大子段和同理。
那我们再维护个 区间和 ,那 最大子段和 ,前 \(/\) 后 缀最大子段和 就都满足区间可加性了。
至于 区间和 \(......\) ,这玩意直接加就行了。
(上述内容大家可以自己画图感性理解一下
\(~\)
求解过程
约定变量:
\(sum\) : 区间和
\(lmax\) : 区间前缀最大子段和
\(rmax\) : 区间后缀最大子段和
\(wmax\) : 区间最大子段和
设函数 \(ask(l,r)\) 求的是关于区间 \([l,r]\) 的一个四元组\((\) \(sum\), \(lmax\), \(rmax\), \(wmax\) \()\)
首先有一个递归边界 \(l=r\) ,此时这四个元素均为 \(A_l\) 。
那对于一般情况,令 \(lc=ask(l,mid),rc=ask(mid+1,r)\) ,则有:
\]
\]
\]
\]
此时 \(self\) 即为 \(ask(l,r)\) 。
struct data{
int sum;
int lmax;
int rmax;
int wmax;
};
data ask(int l,int r)
{
data self;
if(l==r)
{
self.sum=self.lmax=self.rmax=self.wmax=A[l];
return self;
}
int mid=(l+r)/2;
data lc=ask(l,mid),rc=ask(mid+1,r);
self.sum=lc.sum+rc.sum;
self.lmax=max(lc.lmax,lc.sum+rc.lmax);
self.rmax=max(rc.rmax,rc.sum+lc.rmax);
self.wmax=max(max(lc.wmax,rc.wmax),lc.rmax+rc.lmax);
return self;
}
\(~\)
然后你会发现,若对于每个询问都调用一次 ask(l,r) 会稳稳 T 掉
那我 bb 这么多有什么用呢
大家仔细想想,这个分治的过程像不像某个数据结构呢?
线段树?
线段树!
是的,用线段树维护,每个节点保存的是该节点所代表的区间 \([l,r]\) 的 \((\) \(sum\), \(lmax\), \(rmax\), \(wmax\) \()\) 。
剩下的都是一些线段树基本操作了。
\]
#include<cstdio>
#include<algorithm>
#define RI register int
using namespace std;
const int SIZE=500100;
int n,m;
int a[SIZE];
struct SegmentTree{
int l,r;
int sum;
int lmax;
int rmax;
int dat;
}t[SIZE*4];
void build(int p,int l,int r)
{
t[p].l=l;t[p].r=r;
if(l==r){t[p].sum=t[p].lmax=t[p].rmax=t[p].dat=a[l];return;}
int mid=(l+r)/2;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].sum=t[p*2].sum+t[p*2+1].sum;
t[p].lmax=max(t[p*2].lmax,t[p*2].sum+t[p*2+1].lmax);
t[p].rmax=max(t[p*2+1].rmax,t[p*2+1].sum+t[p*2].rmax);
t[p].dat=max(max(t[p*2].dat,t[p*2+1].dat),t[p*2].rmax+t[p*2+1].lmax);
}
void change(int p,int x,int val)
{
if(t[p].l==t[p].r){t[p].sum=t[p].lmax=t[p].rmax=t[p].dat=val;return;}
int mid=(t[p].l+t[p].r)/2;
if(x<=mid)change(p*2,x,val);
else change(p*2+1,x,val);
t[p].sum=t[p*2].sum+t[p*2+1].sum;
t[p].lmax=max(t[p*2].lmax,t[p*2].sum+t[p*2+1].lmax);
t[p].rmax=max(t[p*2+1].rmax,t[p*2+1].sum+t[p*2].rmax);
t[p].dat=max(max(t[p*2].dat,t[p*2+1].dat),t[p*2].rmax+t[p*2+1].lmax);
}
SegmentTree ask(int p,int l,int r)
{
if(l<=t[p].l&&t[p].r<=r)return t[p];
int mid=(t[p].l+t[p].r)/2;
if(l<=mid&&mid<r)
{
SegmentTree lc=ask(p*2,l,r),rc=ask(p*2+1,l,r),self;
self.sum=self.lmax=self.rmax=self.dat=0;
self.sum=lc.sum+rc.sum;
self.lmax=max(lc.lmax,lc.sum+rc.lmax);
self.rmax=max(rc.rmax,rc.sum+lc.rmax);
self.dat=max(max(lc.dat,rc.dat),lc.rmax+rc.lmax);
return self;
}
if(l<=mid)
return ask(p*2,l,r);
if(mid<r)
return ask(p*2+1,l,r);
}
int main()
{
scanf("%d",&n);
for(RI i=1;i<=n;i++)
scanf("%d",&a[i]);
build(1,1,n);
scanf("%d",&m);
while(m--)
{
char op[2];
int l,r;
scanf("%s%d%d",op,&l,&r);
switch(op[0])
{
case '1':{
if(l>r)swap(l,r);
printf("%d\n",ask(1,l,r).dat);
break;
}
case '0':{
change(1,l,r);
break;
}
}
}
return 0;
}
\]
题解 SP1716 【GSS3 - Can you answer these queries III】的更多相关文章
- 线段树 SP1716 GSS3 - Can you answer these queries III
SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...
- SP1716 GSS3 - Can you answer these queries III 线段树
问题描述 [LG-SP1716](https://www.luogu.org/problem/SP1716] 题解 GSS 系列的第三题,在第一题的基础上带单点修改. 第一题题解传送门 在第一题的基础 ...
- SP1716 GSS3 - Can you answer these queries III
题面 题解 相信大家写过的传统做法像这样:(这段代码蒯自Karry5307的题解) struct SegmentTree{ ll l,r,prefix,suffix,sum,maxn; }; //.. ...
- SP1716 GSS3 - Can you answer these queries III(单点修改,区间最大子段和)
题意翻译 nnn 个数, qqq 次操作 操作0 x y把 AxA_xAx 修改为 yyy 操作1 l r询问区间 [l,r][l, r][l,r] 的最大子段和 题目描述 You are give ...
- SP1716 GSS3 - Can you answer these queries III - 动态dp,线段树
GSS3 Description 动态维护最大子段和,支持单点修改. Solution 设 \(f[i]\) 表示以 \(i\) 为结尾的最大子段和, \(g[i]\) 表示 \(1 \sim i\) ...
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- 数据结构(线段树):SPOJ GSS3 - Can you answer these queries III
GSS3 - Can you answer these queries III You are given a sequence A of N (N <= 50000) integers bet ...
- 题解【SP1716】GSS3 - Can you answer these queries III
题目描述 You are given a sequence \(A\) of \(N (N <= 50000)\) integers between \(-10000\) and \(10000 ...
- 【SP1716】GSS3 - Can you answer these queries III(动态DP)
题目链接 之前用线段树写了一遍,现在用\(ddp\)再写一遍. #include <cstdio> #define lc (now << 1) #define rc (now ...
随机推荐
- Django 博客实现简单的全文搜索
作者:HelloGitHub-追梦人物 文中所涉及的示例代码,已同步更新到 HelloGitHub-Team 仓库 搜索是一个复杂的功能,但对于一些简单的搜索任务,我们可以使用 Django Mode ...
- Redis-CAP定理和BASE理论(二)
CAP理论概述 1998 年来自柏克莱加州大学的计算机科学家 埃里克.布鲁尔(Eric Brewer) 提出分布式系统的三个基本指标:Consistency(一致性).Availability(可用性 ...
- 【转】VS2017缺少文件
在VS工程中,添加c/c++工程中外部头文件及库的基本步骤: 1.添加工程的头文件目录:工程---属性---配置属性---c/c++---常规---附加包含目录:加上头文件存放目录. 2.添加文件引用 ...
- 【Java基础总结】数据库编程
MySQL数据库查询 import java.sql.*; public class JdbcDemo1{ public static void main(String[] args){ try{ / ...
- 【转】DB2数据库编目的概念以及对其的正确解析
此文章主要向大家描述的是DB2数据库编目的概念以及对DB2数据库编目的概念的正确理解,在DB2中编目(catalog)这个单词看似很难理解,我自己当初在学习DB2数据库的时候也常常被这个编目搞的很不明 ...
- P2756 飞行员配对方案问题 二分图匹配 匈牙利算法
题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其中1 名是英国飞行员,另1名是外 ...
- cogs 1588. [USACO Feb04]距离咨询 倍增LCA
1588. [USACO Feb04]距离咨询 ★★ 输入文件:dquery.in 输出文件:dquery.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 农夫 ...
- 如何用好Go的测试黑科技
测试是每一个开发人员都需要掌握的技能,尽管你不需要像测试人员那么专业,但你也应该尽可能的做到那么专业,据我了解到我身边的一些Go开发人员,他们对Go的测试仅仅局限于写一个_test.go 测试文件,对 ...
- importlib 根据字符串导入模块
应用: Django中间件,rest framework 组件的全局配置文件 import importlib path = "abc.def.foo" module_path,c ...
- Django admin的常用方法
一.HTTP 1.主页面 http://127.0.0.1:8000/admin/ 2.查询页面 http://127.0.0.1:8000/admin/app01/book/ 3.增加页面 http ...