Drainage Ditches

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14721    Accepted Submission(s):
6968

Problem Description
Every time it rains on Farmer John's fields, a pond
forms over Bessie's favorite clover patch. This means that the clover is covered
by water for awhile and takes quite a long time to regrow. Thus, Farmer John has
built a set of drainage ditches so that Bessie's clover patch is never covered
in water. Instead, the water is drained to a nearby stream. Being an ace
engineer, Farmer John has also installed regulators at the beginning of each
ditch, so he can control at what rate water flows into that ditch.
Farmer
John knows not only how many gallons of water each ditch can transport per
minute but also the exact layout of the ditches, which feed out of the pond and
into each other and stream in a potentially complex network.
Given all this
information, determine the maximum rate at which water can be transported out of
the pond and into the stream. For any given ditch, water flows in only one
direction, but there might be a way that water can flow in a circle.
 
Input
The input includes several cases. For each case, the
first line contains two space-separated integers, N (0 <= N <= 200) and M
(2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is
the number of intersections points for those ditches. Intersection 1 is the
pond. Intersection point M is the stream. Each of the following N lines contains
three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the
intersections between which this ditch flows. Water will flow through this ditch
from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which
water will flow through the ditch.
 
Output
For each case, output a single integer, the maximum
rate at which water may emptied from the pond.
 
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
 
Sample Output
50
 
Source
 
Recommend
lwg   |   We have carefully selected several similar
problems for you:  1533 3338 1569 3572 3416 
 
第一次学习写最大流问题,一道模板题,思路还是比较清晰的,不过算法效率不是很高,还需要学习更快的方法。
 
题意:就是由于下大雨的时候约翰的农场就会被雨水给淹没,无奈下约翰不得不修建水沟,而且是网络水沟,并且聪明的约翰还控制了水的流速,本题就是让你求出最大流速,无疑要运用到求最大流了。题中N为水沟数,M为水沟的顶点,接下来Si,Ei,Ci分别是水沟的起点,终点以及其容量。求源点1到终点M的最大流速。注意重边
 
附上代码:
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
#define INF 1e9
#define CL(a,b) memset(a,b,sizeof(a))
#define N 205 int n,m;
int mat[N][N];
int pre[N];
bool vis[N]; int xmin(int a,int b)
{
return a>b?b:a;
} bool BFS()
{
int cur;
queue<int> q;
CL(pre,);
CL(vis,false);
vis[]=true; ///true表示这个点已作为起点搜索过了
q.push();
while(!q.empty())
{
cur=q.front();
q.pop();
if(cur == n) return true; ///若搜到了终点,说明这是条增广路径,更新结果
for(int i=; i<=n; i++)
if(!vis[i] && mat[cur][i]) ///是否存在通过的路径
{
q.push(i);
pre[i]=cur;
vis[i]=true;
}
}
return false; ///若已经搜不到终点,则搜索结束
} int max_flow()
{
int ans=;
while()
{
if(!BFS()) return ans;
int Min = INF;
for(int i=n; i!=; i=pre[i])
Min=xmin(Min,mat[pre[i]][i]); ///找到最小的边,残留路径越小,则流量越大
for(int i=n; i!=; i=pre[i])
{
mat[pre[i]][i]-=Min; ///正向边
mat[i][pre[i]]+=Min; ///反向边
}
ans+=Min;
}
} int main()
{
int i,j;
while(~scanf("%d%d",&m,&n))
{
CL(mat,);
int a,b,c;
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
mat[a][b]+=c; ///考虑重边情况,若有两条同样的边,流量为它们的和
}
printf("%d\n",max_flow());
}
return ;
}

hdu 1532 Drainage Ditches(最大流模板题)的更多相关文章

  1. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  2. hdu 1532 Drainage Ditches(最大流)

                                                                                            Drainage Dit ...

  3. POJ 1273 || HDU 1532 Drainage Ditches (最大流模型)

    Drainage DitchesHal Burch Time Limit 1000 ms Memory Limit 65536 kb description Every time it rains o ...

  4. hdu 1532 Drainage Ditches (最大流)

    最大流的第一道题,刚开始学这玩意儿,感觉好难啊!哎····· 希望慢慢地能够理解一点吧! #include<stdio.h> #include<string.h> #inclu ...

  5. HDU 1532 Drainage Ditches(最大流 EK算法)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1532 思路: 网络流最大流的入门题,直接套模板即可~ 注意坑点是:有重边!!读数据的时候要用“+=”替 ...

  6. HDU 1532 Drainage Ditches 最大流 (Edmonds_Karp)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1532 感觉题意不清楚,不知道是不是个人英语水平问题.本来还以为需要维护入度和出度来找源点和汇点呢,看 ...

  7. poj 1273 && hdu 1532 Drainage Ditches (网络最大流)

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53640   Accepted: 2044 ...

  8. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  9. HDU 1532 Drainage Ditches (网络流)

    A - Drainage Ditches Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. Ubuntu 服务器默认的root账号是没有激活的,需要用初装的用户账号给root设置管理密码

    user@ubuntu12:~$ sudo password root //用sudo修改账户 1.根据提示输入当前用户的密码: 2.修改成功之后你就可以使用root账号了,可以使用su root 命 ...

  2. UE4物理模块(三)---碰撞查询(上)

    在前一文中介绍了如何在UE4中创建简单碰撞或者直接使用其mesh表示的复杂碰撞: Jerry:UE4物理模块(二)---建立物体碰撞​zhuanlan.zhihu.com 那么在拿到碰撞之后,就可以进 ...

  3. 使用log4j打印日志

    在项目中我们必不可少需要打印日志,通过日志我们可以查看系统的运行状态是否正常,当程序出现异常的时候,我们也可以通过查看日志来定位问题的位置,给程序员的工作带来了极大的便利. 以下这边博客的内容是我从一 ...

  4. django 验证码(django-simple-captcha)

    django 验证码(django-simple-captcha) django-simple-captcha 官方文档(含基于modelForm的用法)  https://django-simple ...

  5. js 详解setTimeout定时器

    setTimeout: 定时器函数 第一个参数是匿名函数,第二个参数是延迟执行时间 setTimeout(function(){},time) 注意: 1.setTimeout函数是Window对象提 ...

  6. JavaScript字符串、数组、对象方法总结

    字符串方法 示例字符串: const str = "hello,kitty,hello,vue "; 一.基本方法 charAt(n) 返回指定索引的字符 charCodeAt(n ...

  7. OWIN启动类检测

    每个OWIN应用程序都有一个启动类,可以在这个类里为应用程序管道指定组件.有不同的方式可以将启动类与运行时关联起来,这依赖于选择的托管模型(OwinHost,IIS,IIS-Express).本教程中 ...

  8. 使用web-component搭建企业级组件库

    组件库的现状 前端目前比较主流的框架有react,vuejs,angular等. 我们通常去搭建组件库的时候都是基于某一种框架去搭建,比如ant-design是基于react搭建的UI组件库,而ele ...

  9. web服务器与tomcat

    web服务器与tomcat 服务器分类: 硬件服务器和软件服务器 web服务器: 提供资源供别人访问 web: 网页的意思,资源. web资源分类: 动态的web资源:内容有可能发生改变的 静态的we ...

  10. 【JZOJ4787】【NOIP2016提高A组模拟9.17】数格子

    题目描述 输入 输出 样例输入 1 10000 3 10000 5 10000 0 0 样例输出 1 11 95 数据范围 每个测试点数据组数不超过10组 解法 状态压缩动态规划. 设f[i][j]表 ...