PP: Modeling extreme events in time series prediction
KDD: Knowledge Discovery and Data Mining (KDD)
Insititute: 复旦大学,中科大
Problem: time series prediction; modelling extreme events;
overlook the existence of extreme events, which result in weak performance when applying them to real time series.
为什么研究extreme events: Extreme events are rare and random, but do play a critical role in many real applications, such as the forecasting of financial crisis and natural disasters.
the weakness of deep learning methods roots in the conventional form of quadratic loss平方损失; --------> this paper use the extreme value theory极值理论 and develop a new form of loss for detecting the future occurrence of extreme events: extreme value loss.
普通预测: quadratic loss
极值预测:extreme value loss
Use memory network to memorize extreme events in historical records. EVL + memory network
Introduction:
time series prediction: classical research topic.
applications: climate prediction and stocks price monitoring;
Statistical methods: autoregressive moving average ARMA; nonlinear autoregressive exogenous NARX;
RNN (LSTM and GRU, gated recurrent unit); Compared with traditional methods, one of the major advantages of RNN structure is that it enables deep non-linear modeling of temporal patterns.
data imbalance and extreme events are harmful to deep learning models????; 值得验证
what are extreme events in time series: extremely small or large values of irregular and rare occurrences.
How to find extreme events? use certain thresholds to label extreme events
the randomness of extreme events have limited degrees of freedom (DOF)
end-to-end framewark.
underfitting and overfitting training problem;
Related work:
extreme events: 极大阈值 + 极小阈值
重尾分布
extreme value theory;
PROBLEMS CAUSED BY EXTREME EVENTS
conclusion: such a model would perform relatively poor if the true distribution of data in series is heavy-tailed.
underfit and overfit phenomenon
PREDICTING TIME-SERIES DATA WITH EXTREME EVENTS
Two factors: memorizing extreme events and modelling tail distribution; memory network to memorize the characteristic of extreme events; EVL
Memory network module:
1. Assumption: As pointed out by Ghil et al., extreme events in time-series data often show some form of temporal regularity [19]. 极值事件是有时间规律的,这是前提,如果没有这个前提,那么极值事件的研究是没有意义的。对于自然界的事物,如果没有规律性,那么无法进行建模。
2. windows sequence, wj -------- then use GRU to embed each window into feature space. wj as input,
Qi as the extreme events vector. add attention mechanism as a part of the weight and update the output.
Extreme value loss:
Optimization: a direct thought is to combine the predicted outputs ot with the prediction of the occurrence of extreme events,
方差损失上增加了一个对于极值事件的惩罚项。
??这只能算作loss function,怎么算作optimization呢?
Effectiveness of Time Series Prediction
针对两个真实数据库(climate and stock),一个伪造数据库上进行了实验,以rooted mean square error作为度量指标,在预测上约准确了0.01-0.08
但是看结果输出图,在极值上的预测结果确实好了。
Supplementary knowledge:
1. 张老师是战略能力很强,但是由于科研不在一线,导致战术可能会出现偏差。
2. 做交叉领域的文章时,i.可以做方法,ii.可以和领域结合,在领域里make sense, 有影响. 但如果四不像,两边都不会要。
3. 科研过程是一个严谨的流程体系,有一定的方法规律可循,不是瞎打一耙。
4. 其实真正重要的还是loss function怎么定,optimization 如何做,以及tailed distribution的一些现象。本质是数学问题,而非学习各种网络框架,最终还是要看deep learning 那本书和微积分。
PP: Modeling extreme events in time series prediction的更多相关文章
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
- (zhuan) LSTM Neural Network for Time Series Prediction
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the ...
- PP: Composite visual mapping for time series visualization
However: The conventional visual mapping maps each data attribute onto a single visual channel Purpo ...
- PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning
Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-ho ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- Autocorrelation in Time Series Data
Why Time Series Data Is Unique A time series is a series of data points indexed in time. The fact th ...
- 【转载】Chaotic Time-Series Prediction
原文地址:https://cn.mathworks.com/help/fuzzy/examples/chaotic-time-series-prediction.html?requestedDomai ...
- PP: Soft-DTW: a differentiable loss function for time-series
Problem: new loss Label: new loss; Abstract: A differentiable learning loss; Introduction: supervise ...
随机推荐
- sed命令简介
sed处理时,有2个缓冲区:[pattern space]和[hold space] sed执行过程: 先读入一行,去掉尾部换行符,存入[pattern space],执行编辑命令. 处理完毕,除非加 ...
- Redis实现访问控制频率
为什么限制访问频率 做服务接口时通常需要用到请求频率限制 Rate limiting,例如限制一个用户1分钟内最多可以范围100次 主要用来保证服务性能和保护数据安全 因为如果不进行限制,服务调用者可 ...
- JSP开发机票预定系统 源码
开发环境: Windows操作系统开发工具:MyEclipse+Jdk+Tomcat6+Mysql数据库 运行效果图 源码及原文链接:https://javadao.xyz/forum.php?mod ...
- C语言再学习part1-宏观认识C语言
天下莫柔弱于水,而攻坚强者莫之能胜,以其无以易之也.弱之胜强,柔之胜刚,天下莫不知行,莫能行. —老子 我近来每天都在坚持读书,所以我一直沉浸于古人的智慧中无法自拔.所以如果我这篇博文被你有幸看到,那 ...
- webApi前端ajax调用后端返回{"readyState":0,"status":0,"statusText":"error"}解决方案
var url = data.url, params = data.params, try_times = data.try_times , async = data.sync == 'false' ...
- nginx: [warn] conflicting server name "aaa.7yule.cn" on 0.0.0.0:80, ignored
故障现象: 修改nginx配置参数后,使用nginx -t检查配置,出现告警提示 nginx: [warn] conflicting server name "aaa.7yule.cn&qu ...
- cf1012B
题意简述: 给定一个 n×m的矩阵,其中 q 个位置已经被填充. 有一条规则,如果 (r1,c1) ,(r1,c2),(r2,c1) 均被填充,则 (r2,c2) 也被填充.任何被其他三个位置生成的位 ...
- 【感知机模型】手写代码训练 / 使用sklearn的Perceptron模块训练
读取原始数据 import pandas as pd import numpy as np in_data = pd.read_table('./origin-data/perceptron_15.d ...
- Visionpro学习笔记(壹)
注册4年,第一次发了随笔.我的博客将主要涉及到visionPro软件的学习,labview数据采集方面的思考,c#及VS的学习 此随笔系列主要是关于VisionPro(以后简称VP)的学习及使用. 近 ...
- tensor的维度扩张的手段--Broadcasting
broadcasting是tensorflow中tensor维度扩张的最常用的手段,指对某一个维度上重复N多次,虽然它呈现数据已被扩张,但不会复制数据. 可以这样理解,对 [b,784]@[784,1 ...