吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99 TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
loss = cross_entropy_mean # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()
吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例
import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...
- 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...
随机推荐
- Apache Kafka(八)- Kafka Delivery Semantics for Consumers
Kafka Delivery Semantics 在Kafka Consumer中,有3种delivery semantics,分别为:至多一次(at most once).至少一次(at least ...
- artTemplate使用说明
普通使用 <script id="test" type="text/html"> {{if isAdmin}} <h1>{{title} ...
- linux虚拟机安装jenkins及maven/jdk配置
一.jenkins安装 (1)tomcat下载,下载地址:https://tomcat.apache.org 选择对应的版本,以下以新版的tomcat 9.0版本为例 下载zip包 (2)jenkin ...
- Map.Entry 类使用简介(转)
Map.Entry 类使用简介(转) 你是否已经对每次从Map中取得关键字然后再取得相应的值感觉厌倦?使用Map.Entry类,你可以得到在同一时间得到所有的信息.标准的Map访问方法如下: Se ...
- docker容器 - 新建容器、启动容器、暂停容器和停止容器
实验环境 CentOS 7.5 容器 容器是镜像的运行实例.不同的是,镜像是静态的只读文件,而容器带有运行时需要的可写文件层:同时,容器中的应用进程处于运行状态. 新建容器 [root@kvm ~]# ...
- sublime 神一样的插件
专属配置 // 主题 "theme": "Boxy Tomorrow.sublime-theme", "theme_grid_border_size_ ...
- Refusing to install package with name "webpack" under a package
最近学习webpack 知识时 下载依赖结果报了这个错 查阅资料后发现是 这个name 不能使用所需要安装包的名字! 换为其他之后 再次操作命令 就没问题了
- Linux实现树莓派3B的国密SM9算法交叉编译——(二)miracl库的测试与静态库的生成
先参考这篇文章 Linux实现树莓派3B的国密SM9算法交叉编译——(一)环境部署.简单测试与eclipse工程项目测试 部署好环境,并简单测试交叉编译环境是否安装成功,最后实现在Eclipse上进行 ...
- 优酷1080p的kux格式文件怎么转换为MP4格式?
直接使用优酷自己的FFMPEG解码! 格式为:"优酷ffmpeg.exe的安装地址" -y -i ".kux文件储存地址" -c:v copy -c:a cop ...
- JSP技术(三)
JSP指令 指令是JSP语法元素的第一种类型.它们指示JSP转换器如何翻译JSP页面为Servlet.JSP定义了多个指令,但只有page和include最重要.而taglib.tag.attribu ...