吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99 TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2
else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
loss = cross_entropy_mean # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys})
test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True)
train(mnist) if __name__=='__main__':
main()
吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用正则化的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用滑动平均
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用隐藏层
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用激活函数
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:不使用指数衰减的学习率
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:全模型
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:MNIST最佳实践
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_N ...
- 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例
import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...
- 吴裕雄--天生自然 Tensorflow卷积神经网络:花朵图片识别
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from ...
随机推荐
- 联想小新潮怎么修改fn热键以及怎么进入bios状态
联想小新潮怎么修改fn热键 http://www.ylmfwin100.com/ylmfnew/11129.html 怎么进入bios状态 https://zhidao.baidu.com/que ...
- 转载:reverb
https://blog.csdn.net/qiumingjian/article/details/43938687 https://blog.csdn.net/jsjwangmingmin/arti ...
- AC3 overview
1.AC3 encode overview AC3 encoder的框图如下: AC3在频域采用粗量化(coarsely quantizing)来获取较高的压缩率. 1).输入PCM 经过MDCT变换 ...
- 美化传奇NPC对话框添加图片显示实列
NPC对话框一般都是文字显示,有些GM想突出版本特色,在NPC对话框加些专业图片,彰显独特之处,其实这是很简单的.下面为你讲解美化传奇NPC对话框添加图片显示实列 我们要添加你要放入npc图片的补丁. ...
- 下载图片(vue 下载图片)
downloadImg(){ const url = this.imgUrl // window.open(_this.detail.imgUrl) let xmlhttp=new XMLHttpRe ...
- 搭建Hexo一键生成,同步部署
全网最全小白搭建Hexo+Gitee/Coding/Github 全网最全小白搭建Hexo+Gitee/Coding/Github 本站内容已全部转移到https://www.myyuns.ltd,具 ...
- TinyXML解析
TinyXML介绍 最近做一个负载均衡的小项目,需要解析xml配置文件,用到了TinyXML,感觉使用起来很容易,给出一个使用TinyXML进行XML解析的简单例子,很多复杂的应用都可以基于本例子的方 ...
- python字典里面列表排序
#coding=utf8 #获取到的数据库ip,和负载数据,需要按照负载情况排序 a={u'1.8.1.14': [379, 368, 361, 358, 1363], u'9.2.4.3': [42 ...
- 前端——语言——Core JS——《The good part》读书笔记——附录三,四,五(JSLint,铁路图,JSON)
1.JSLint 本书的JSLint部分只是一个引言,详细了解该工具的使用参考http://www.jslint.com/ 2.铁路图 在本书中使用过的铁路图集中放在这部分附录中,其实读完本书之后,没 ...
- 记一道简单的re--BUUctf reverse1
1.首先拖进ida里,看到了左面一百多function...还是shift+f12 查看敏感字符串吧 2.发现了这两个比较可疑的字符串,然后双击this is the right flag 进入到了他 ...