比较排序与非比较排序的对比

  常见的快速排序、归并排序、堆排序、冒泡排序等属于比较排序。在排序的最终结果里,元素之间的次序依赖于它们之间的比较。每个数都必须和其他数进行比较,才能确定自己的位置。在冒泡排序之类的排序中,问题规模为n,又因为需要比较n次,所以平均时间复杂度为O(n²)。在归并排序、快速排序之类的排序中,问题规模通过分治法消减为logN次,所以时间复杂度平均O(nlogn)。比较排序的优势是,适用于各种规模的数据,也不在乎数据的分布,都能进行排序。可以说,比较排序适用于一切需要排序的情况。
计数排序、基数排序、桶排序则属于非比较排序。非比较排序是通过确定每个元素之前,应该有多少个元素来排序。针对数组arr,计算arr[i]之前有多少个元素,则唯一确定了arr[i]在排序后数组中的位置。
  非比较排序只要确定每个元素之前的已有的元素个数即可,所有一次遍历即可解决。算法时间复杂度O(n)。非比较排序时间复杂度底,但由于非比较排序需要占用空间来确定唯一位置。所以对数据规模和数据分布有一定的要求。
 

比较排序

常见的比较排序主要有以下几种:

  1. 插入排序:直接插入排序、二分法插入排序、希尔排序。
  2. 选择排序:简单选择排序、堆排序。
  3. 交换排序:冒泡排序、快速排序。
  4. 归并排序

一、插入排序

•思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置,直到全部插入排序完为止。
•关键问题:在前面已经排好序的序列中找到合适的插入位置。
•方法:
–直接插入排序
–二分插入排序

–希尔排序

①直接插入排序(从后向前找到合适位置后插入)

1、基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置(从后向前找到合适位置后),直到全部插入排序完为止。

2、算法实现

 package com.allSorts;

 /**
* Created by Demrystv.
*/
public class ChaRu_ZhiJie {
public static void main(String[] args) { int[] a = {32,63,13,47};
System.out.println("排序前:");
for(int i=0;i<a.length;i++){
System.out.print(a[i]+" ");
} for(int i=1;i<a.length;i++){
int temp = a[i];
int j;
for(j=i-1;j>=0;j--){
if(a[j]>temp){
a[j+1] = a[j];
}else {
break;
}
}
a[j+1] = temp;
} System.out.println("");
System.out.println("排序后:");
for(int i=0;i<a.length;i++){
System.out.print(a[i]+" ");
}
}
}

3、分析

  直接插入排序是稳定的排序。
  文件初态不同时,直接插入排序所耗费的时间有很大差异。若文件初态为正序,则每个待插入的记录只需要比较一次就能够找到合适的位置插入,故算法的时间复杂度为O(n),这时最好的情况。若初态为反序,则第i个待插入记录需要比较i+1次才能找到合适位置插入,故时间复杂度为O(n2),这时最坏的情况。
  直接插入排序的平均时间复杂度为O(n2)。

②二分法插入排序(按二分法找到合适位置后插入)

1、基本思想:二分法插入排序的思想和直接插入一样,只是找合适的插入位置的方式不同,这里是按二分法找到合适的位置,可以减少比较的次数。

2、算法实现

 package com.allSorts;

 /**
* Created by Demrystv.
*/
public class ChaRu_ErFenFa {
public static void main(String[] args) {
int[] a = {32,86,12,95};
System.out.println("排序前:");
for(int i=0;i<a.length;i++){
System.out.print(a[i]+" ");
} sort(a); System.out.println("");
System.out.println("排序后:");
for(int i=0;i<a.length;i++){
System.out.print(a[i]+" ");
}
} //二分法插入排序
private static void sort(int[] array){
for (int i=0;i<array.length;i++){
int temp = array[i];
int left = 0;
int right = i-1;
int mid = 0; while (left<=right) {
mid = left + (right - left) / 2;
if (array[mid] > temp) {
right = mid - 1;
} else {
left = mid + 1;
}
} for(int j=i-1;j>=left;j--){
array[j+1] = array[j];
} if(left!=i){
array[left] = temp;
}
}
}
}

3、分析 

当然,二分法插入排序也是稳定的。

  二分插入排序的比较次数与待排序记录的初始状态无关,仅依赖于记录的个数。当n较大时,比直接插入排序的最大比较次数少得多。但大于直接插入排序的最小比较次数。算法的移动次数与直接插入排序算法的相同,最坏的情况为n2/2,最好的情况为n,平均移动次数为O(n2)。

③希尔排序

1、基本思想:先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。该方法实质上是一种分组插入方法。

2、算法实现

3、分析
  一次插入排序是稳定的,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序是不稳定的。
  希尔排序的时间性能优于直接插入排序,原因如下:
  (1)当文件初态基本有序时直接插入排序所需的比较和移动次数均较少。
  (2)当n值较小时,n和n2的差别也较小,即直接插入排序的最好时间复杂度O(n)和最坏时间复杂度0(n2)差别不大。
  (3)在希尔排序开始时增量较大,分组较多,每组的记录数目少,故各组内直接插入较快,后来增量di逐渐缩小,分组数逐渐减少,而各组的记录数目逐渐增多,但由于已经按di-1作为距离排过序,使文件较接近于有序状态,所以新的一趟排序过程也较快。
  因此,希尔排序在效率上较直接插人排序有较大的改进。
  希尔排序的平均时间复杂度为O(nlogn)。

二、选择排序

•思想:每趟从待排序的记录序列中选择关键字最小的记录放置到已排序表的最前位置,直到全部排完。
•关键问题:在剩余的待排序记录序列中找到最小关键码记录。
•方法:
–直接选择排序

–堆排序

①直接选择排序

1、基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

2、算法实现

3、分析
  简单选择排序是不稳定的排序。
  时间复杂度:T(n)=O(n2)。

②堆排序

1、基本思想:
  堆排序是一种树形选择排序,是对直接选择排序的有效改进。
  堆的定义:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

  思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

2、算法实现

3、分析
  堆排序也是一种不稳定的排序算法。
  堆排序优于简单选择排序的原因:
  直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
  堆排序可通过树形结构保存部分比较结果,可减少比较次数。
  堆排序的最坏时间复杂度为O(nlogn)。堆序的平均性能较接近于最坏性能。由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。

三、交换排序

①冒泡排序

1、基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

2、算法实现

3、分析
  冒泡排序是一种稳定的排序方法。 
•若文件初状为正序,则一趟起泡就可完成排序,排序码的比较次数为n-1,且没有记录移动,时间复杂度是O(n)
•若文件初态为逆序,则需要n-1趟起泡,每趟进行n-i次排序码的比较,且每次比较都移动三次,比较和移动次数均达到最大值∶O(n2)

•起泡排序平均时间复杂度为O(n2)

②快速排序

1、基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。

2、算法实现

3、分析
  快速排序是不稳定的排序。
  快速排序的时间复杂度为O(nlogn)。

  当n较大时使用快排比较好,当序列基本有序时用快排反而不好。

四、归并排序

1、基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

2、算法实现

3、分析
  归并排序是稳定的排序方法。
  归并排序的时间复杂度为O(nlogn)。
  速度仅次于快速排序,为稳定排序算法,一般用于对总体无序,但是各子项相对有序的数列。

数据结构与算法之比较排序【Java】的更多相关文章

  1. Java数据结构和算法(五)--希尔排序和快速排序

    在前面复习了三个简单排序Java数据结构和算法(三)--三大排序--冒泡.选择.插入排序,属于算法的基础,但是效率是偏低的,所以现在 学习高级排序 插入排序存在的问题: 插入排序在逻辑把数据分为两部分 ...

  2. Java数据结构和算法(三)--三大排序--冒泡、选择、插入排序

    三大排序在我们刚开始学习编程的时候就接触过,也是刚开始工作笔试会遇到的,后续也会学习希尔.快速排序,这里顺便复习一下 冒泡排序: 步骤: 1.从首位开始,比较首位和右边的索引 2.如果当前位置比右边的 ...

  3. 数据结构与算法之--高级排序:shell排序和快速排序

    高级排序比简单排序要快的多,简单排序的时间复杂度是O(N^2),希尔(shell)排序大约是O(N*(logN)^2),而快速排序是O(N*logN). 说明:下面以int数组的从小到大排序为例. 希 ...

  4. 数据结构与算法之PHP排序算法(堆排序)

    一.堆的定义 堆通常是一个可以被看做一棵树的数组对象,其任一非叶节点满足以下性质: 1)堆中某个节点的值总是不大于或不小于其父节点的值: 每个节点的值都大于或等于其左右子节点的值,称为大顶堆.即:ar ...

  5. 数据结构与算法之PHP排序算法(希尔排序)

    一.基本思想 希尔排序算法是希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本. 该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接 ...

  6. Java数据结构与算法(2) - ch03排序(冒泡、插入和选择排序)

    排序需要掌握的有冒泡排序,插入排序和选择排序.时间为O(N*N). 冒泡排序: 外层循环从后往前,内存循环从前往后到外层循环,相邻数组项两两比较,将较大的值后移. 插入排序: 从排序过程的中间开始(程 ...

  7. JAVA数据结构和算法 3-简单排序

    排序中的两种基本操作是比较和交换.在插入排序中还有移动. 冒泡排序:两两比较相邻元素,如果较大数位于较小数前面,则交换: 每一趟遍历将一个最大的数移到序列末尾,共遍历N-1趟. 如果执行完一趟之后没有 ...

  8. 【Java数据结构与算法】简单排序、二分查找和异或运算

    简单排序 选择排序 概念 首先,找到数组中最小的那个元素,其次,把它和数组的第一个元素交换位置(如果第一个元素就是最小的元素那么它就和自己交换).再次,在剩下的元素中找到最小的元素,将它与数组的第二个 ...

  9. ZH奶酪:【数据结构与算法】基础排序算法总结与Python实现

    1.冒泡排序(BubbleSort) 介绍:重复的遍历数列,一次比较两个元素,如果他们顺序错误就进行交换. 2016年1月22日总结: 冒泡排序就是比较相邻的两个元素,保证每次遍历最后的元素最大. 排 ...

随机推荐

  1. ajax实现文本框的联想功能

    先写一个jsp通过ajax传值给servlet进行查询再传给对应的div进行显示. <%@ page language="java" contentType="te ...

  2. 自动化测试用例中的raise

    1.一次自动化测试学习中,expect异常中包含“raise e”,这是什么意思呢? 2.网上查了一下,大概意思是:若有异常,不会执行一下的操作,但是明明是语句后确实没有其他语句呀. 3.注释掉之后, ...

  3. ImportError: DLL load failed: 找不到指定的模块;ImportError: numpy.core.multiarray failed to import 报错解决

    python程序运行出错,出错的两行主要信息如下: ImportError: DLL load failed: 找不到指定的模块 ImportError: numpy.core.multiarray ...

  4. pytorch之 regression

    import torch import torch.nn.functional as F import matplotlib.pyplot as plt # torch.manual_seed(1) ...

  5. zabbix-server配置文件详解

    zabbix官方文档:https://www.zabbix.com/documentation/4.0/zh/manual zabbix-server端的配置文件在/etc/zabbix/zabbix ...

  6. Vue使用v-for显示列表时,数组里的item数据更新,视图中列表不同步更新的解决方法

    由于初始化类型错误导致的不更新,代码是这样的: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  7. 常用MySQL操作

    常用MySQL操作 更改MySQL数据库root的密码 将绝对路径加入环境变量并设置开机启动 # PATH=$PATH:/usr/local/mysql/bin # echo "PATH=$ ...

  8. SQL Server 2019 安装教程

    SQL Server 2019 安装教程 下载安装SQL: 1.下载SQL Server 2019 Developer 官方网址:下载地址. 2.下拉选择免费版本,直接点击下载(别问,问就是家境贫寒

  9. C#设计模式学习笔记:(9)组合模式

    本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/7743118.html,记录一下学习过程以备后续查用. 一.引言 今天我们要讲结构型设计模式的第四个模式--组 ...

  10. Centos 7.5 搭建FTP配置虚拟用户

    Centos 7.5 搭建FTP配置虚拟用户 1.安装vsftpd #vsftpd下载地址 http://mirror.centos.org/centos/7/os/x86_64/Packages/v ...