好神的一道计数题呀.

code:

#include <cstdio>
#include <algorithm>
#include <cstring>
#define N 5000003
#define ll long long
#define mod 998244353
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int invg[N],dp[N],f[N],fac[N],inv[N];
ll g[N];
int qpow(int x,int y)
{
int tmp=1;
for(;y;y>>=1,x=(ll)x*x%mod)
if(y&1) tmp=(ll)tmp*x%mod;
return tmp;
}
int C(int x,int y)
{
return (ll)fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int INV(int x) { return qpow(x,mod-2); }
void solve()
{
int n,m,l,mi,kth,i,j;
scanf("%d%d%d%d",&n,&m,&l,&kth);
mi=min(min(n,m),l);
if(kth>mi) { printf("0\n"); return ; }
ll tot=1ll*n*m%mod*l%mod,in=1ll;
g[0]=tot%mod;
for(i=1;i<=mi;++i)
{
g[i]=(tot-1ll*(n-i)*(m-i)%mod*(l-i)%mod+mod)%mod;
in=in*g[i]%mod;
}
invg[mi]=qpow(in,mod-2);
for(i=mi-1;i>=0;--i) invg[i]=(ll)invg[i+1]*g[i+1]%mod;
f[0]=1;
for(i=0;i<mi;++i) f[i+1]=(ll)f[i]*(n-i)%mod*(m-i)%mod*(l-i)%mod;
for(i=0;i<=mi;++i) dp[i]=(ll)f[i]*invg[i]%mod;
int ans=0;
for(i=kth;i<=mi;++i)
{
int d=((i-kth)&1)?(mod-1):1;
(ans+=(ll)d*C(i,kth)%mod*dp[i]%mod)%=mod;
}
printf("%d\n",ans);
}
void init()
{
fac[0]=1;
for(int i=1;i<N;i++) fac[i]=(ll)fac[i-1]*i%mod;
inv[N-1]=qpow(fac[N-1],mod-2);
for(int i=N-2;i>=0;i--) inv[i]=(ll)inv[i+1]*(i+1)%mod;
}
int main()
{
// setIO("input");
init();
int i,j,T;
scanf("%d",&T);
while(T--) solve();
return 0;
}

  

LOJ #3119. 「CTS2019 | CTSC2019」随机立方体 组合计数+二项式反演的更多相关文章

  1. LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)

    博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const ...

  2. 【LOJ】#3119. 「CTS2019 | CTSC2019」随机立方体

    题解 用容斥,算至少K个极大值的方案数 我们先钦定每一维的K个数出来,然后再算上排列顺序是 \(w_{k} = \binom{n}{k}\binom{m}{k}\binom{l}{k}(k!)^3\) ...

  3. 「CTS2019 | CTSC2019」随机立方体 解题报告

    「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...

  4. LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体

    题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...

  5. LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演

    题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...

  6. Loj #3124. 「CTS2019 | CTSC2019」氪金手游

    Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 ...

  7. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  8. LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP

    题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \s ...

  9. @loj - 3120@ 「CTS2019 | CTSC2019」珍珠

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机 ...

随机推荐

  1. MySQL必知必会官方提供的数据库和表

    创建表 Create customers table CREATE TABLE customers ( cust_id int NOT NULL AUTO_INCREMENT, cust_name c ...

  2. Github搜索技巧-如何使用github找到自己感兴趣的项目(转载)

    Github现在不仅仅作为一个版本控制工具,更是一个开源的仓库,里面不但有优秀的开源代码,电子书,还有一些五花八门的项目,有些国家的法律也放在上面,作为程序员如何找到自己感兴趣的项目就非常重要了! 欢 ...

  3. 基于CentOS-7 部署open

    一.OpenVPN概述 OpenVPN是一个用于创建专用网络加密通道的源软件.可在公司和家庭之间.部署类似于局域网的专用网络通道 而且OpenVPN使用起来也非常方便.几乎可以运行在任何平台.同时也采 ...

  4. (转载)Linux平台下安装 python 模块包

    https://blog.csdn.net/aiwangtingyun/article/details/79121145 一.安装Python Windows平台下: 进入Python官网下载页面下载 ...

  5. MySQL中大数据表增加字段,增加索引实现

    MySQL中大数据表增加字段,通过增加索引实现 普通的添加字段sql ALTER TABLE `table_name` ADD COLUMN `num` int(10) NOT NULL DEFAUL ...

  6. Python编程:从入门到实践——【作业】——第六章(字典)

    第六章作业 6-1 人 : 使用一个字典来存储一个熟人的信息, 包括名. 姓. 年龄和居住的城市. 该字典应包含键first_name . last_name . age 和city . 将存储在该字 ...

  7. C语言RH850 F1L serial bootloader和C#语言bootloader PC端串口通信程序

                   了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程 ...

  8. Windwos日志分析

    Windows日志分析工具 查看系统日志方法: 在“开始”菜单上,依次指向“所有程序”.“管理工具”,然后单击“事件查看器” 按 "Window+R",输入 ”eventvwr.m ...

  9. 基于 webGL 的元素周期表 3D 交互展示

    前言 之前在网上看到别人写的有关元素周期表的文章,深深的勾起了一波回忆,记忆里初中时期背的“氢氦锂铍硼,碳氮氧氟氖,钠镁铝硅磷,硫氯氩钾钙”.“养(氧)龟(硅)铝铁盖(钙),哪(钠)家(钾)没(镁)青 ...

  10. JS实现斐波那契数列的几种方法

    斐波那契数列指的是这样一个数列:1.1.2.3.5.8.13.21.34.…… 前两项为1,从第三项起,每一项等于前两项的和,即F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n& ...