【时光回溯】【JZOJ3566】【GDKOI2014】阶乘
题目描述
输入
第一行有一个正整数T,表示测试数据的组数。
接下来的T行,每行输入两个十进制整数n和base。
输出
对于每组数据,输出一个十进制整数,表示在base进制下,n!结尾的零的个数。
样例输入
2
10 10
10 2
样例输出
2
8
数据范围
对于20%的数据,n<=20,base<=16
对于50%的数据,n<=10^9,base<=10^5
对于100%的数据,1<=T<=50,0<=n<=10^18,2<=base<=10^12
解法
题意转化为:令n!=basei∗k,则i为答案;
同时称i为base在n!中的贡献。
直接想法是把base分解质因数为a1k1∗a2k2∗...∗amkm;
然后检查每个质因数ai在n!中的贡献 cnt,于是就可以得出这个质因数最多容纳cnt/ki个base。
把所有容纳能力取个最小值即为答案。
问题在于我们在求ai在n!中的贡献时,可能需要O(nlogn)的时间:
枚举j属于[1..n],易得ai在j中的贡献,累计所有贡献即为ai在n!中的贡献。
如果采用上述办法,时间会超限。
给n一直除素数,并将每一次的商加起来,即为答案。
时间复杂度为O(logn);
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) int(log(x)/log(y))
using namespace std;
const char* fin="ex3566.in";
const char* fout="ex3566.out";
const int inf=0x7fffffff;
const int maxn=100007;
ll n,m,limit,tmp,tmd,tmb,ans;
ll t,i,j,k;
ll yue[maxn],cnt[maxn];
int main(){
scanf("%d",&t);
for (;t;t--){
scanf("%lld%lld",&n,&m);
limit=(ll)sqrt(m);
tmp=m;
yue[0]=0;
for (i=2;i<=limit;i++){
if (tmp==1) break ;
if (tmp%i==0){
yue[++yue[0]]=i;
cnt[yue[0]]=0;
while (tmp%i==0){
cnt[yue[0]]++;
tmp/=i;
}
}
}
if (tmp>1) yue[++yue[0]]=tmp,cnt[yue[0]]=1;
ans=0;
for (i=1;i<=yue[0];i++) {
//ll num=(n/yue[i]),fi=1,la=fi+num-1;
tmd=0;
/*for (j=yue[i];j<=n;j+=yue[i]) {
k=j;
while (k%yue[i]==0) k/=yue[i],tmd++;
}*/
k=n;
while (k) k/=yue[i],tmd+=k;
if (ans) ans=min(ans,tmd/cnt[i]);
else ans=tmd/cnt[i];
/*if (ans) ans=min(ans,(fi+la)*num/2/cnt[i]);
else ans=(fi+la)*num/2/cnt[i];*/
}
printf("%lld\n",ans);
}
return 0;
}
启发
考虑把所有数一起处理,可以节省时间。
【时光回溯】【JZOJ3566】【GDKOI2014】阶乘的更多相关文章
- 【时光回溯】【JZOJ3567】【GDKOI2014】石油储备计划
题目描述 输入 输出 对于每组数据,输出一个整数,表示达到"平衡"状态所需的最小代价. 样例输入 2 3 6 1 5 1 2 1 2 3 2 5 4 5 4 3 2 1 3 1 1 ...
- 【时光回溯】【JZOJ3571】【GDKOI2014】内存分配
题目描述 输入 输出 输出m行,每行一个整数,代表输入中每次程序变化后系统所需要的空闲内存单位数. 样例输入 2 3 1 4 1 4 2 2 1 2 1 1 1 1 1 样例输出 2 3 1 数据范围 ...
- 【时光回溯】【JZOJ3568】【GDKOI2014】小纪的作业题
题目描述 输入 输出 有M行,每个询问一行,输出结果mod 1,000,000,007的值. 样例输入 10 3 3 5 1 2 3 1 3 5 2 1 7 9 3 9 2 3 样例输出 10 19 ...
- 25个 Git 进阶技巧
[ 原文] http://www.open-open.com/lib/view/open1431331496857.html 我已经使用git差不多18个月了,觉得自己对它应该已经非常了解.然后来自G ...
- git基本技巧及进阶
基本技巧 1. 安装后的第一步 在安装好git后,你第一件该做的事是设置你的名字和电子邮箱,因为每次提交都要用到这些信息: $ git config --global user.name " ...
- Git技巧总结分享
接触Git有很长一段时间了,从最初的不懂到逐渐熟悉运用,相比于SVN,更热衷于Git这一款强大的版本控制工具. 废话不多说,下面对Git做了一些技巧总结,在此分享下,希望能帮助到一些喜欢Git的朋友们 ...
- 【BZOJ】【3052】【WC2013】糖果公园
树分块 老早(大约一个月以前?)就听说这道神题了……orz rausen 一直拖到现在才做……发现还是不会呢= = 只好也去Orz了Hzwer和zky http://hzwer.com/5250.ht ...
- HTTP/2 对 Web 性能的影响(上)
一.前言 HTTP/2 于 2015 年 5 月正式推出.自诞生以来,它就一直在影响着网络性能最佳实践.在本篇文章中,我们将讨论 HTTP/2 的二进制帧.延迟削减.潜在利弊以及相应的应对措施. 超文 ...
- [USACO 2010 Open Silver 3.Time Travel]——链表
Description 约翰得到了一台时光机,他可以用这台机器回到过去(但不能到未来),改变他家的牛群.约翰 打算依次进行 N 步操作,每步操作分为三种: • 买入操作以 a 表示,后接一个参数 i, ...
随机推荐
- PAT甲级——A1010 Radix
Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The an ...
- VS中warning MSB8004和error MSB4018解决方案
问题如下: warning MSB8004: Output Directory does not end with a trailing slash. This build instance wil ...
- python-基础-字符串-列表-元祖-字典2
接上:http://www.cnblogs.com/liu-wang/p/8973273.html 3 元组 4 字典 4.1 字典的介绍 <2>软件开发中的字典 变量info为字典类型: ...
- webservice作用(优,缺点;作用)
1其实我们平时的应用,有一方面考虑是部署方便,维护容易~!如果是DLL,部署,更新需要每个应用了这个DLL的应用程序都作相应的引用更新...而如果用了Ws,则不用,因为它通过网络部署,通过网络引用,基 ...
- mac vagrant 虚拟机nfs挂载点
需求:在mac 上安装了虚拟机,虚拟机系统为centos6.5,现在希望讲虚拟机上点目录通过nfs共享给mac使用 下面主要描述通过nfs共享目录给mac调用的过程 过程参考网址: http://ww ...
- spring springmvc 展示图片,静态资源的处理
jsp中显示一张照片 <img alt="静态图片" src="static/目录.png"> 然后在springmvc的配置中加上 <!-- ...
- Oracle锁表查杀会话进程
一.逐条--锁表 (1)查表名 和 sessionidselect b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_obj ...
- day36 08-Hibernate抓取策略:批量抓取
package cn.itcast.test; import java.util.List; import org.hibernate.Hibernate; import org.hibernate. ...
- hadoop-hive查询ncdc天气数据实例
使用hive查询ncdc天气数据 在hive中将ncdc天气数据导入,然后执行查询shell,可以让hive自动生成mapredjob,快速去的想要的数据结果. 1. 在hive中创建ncdc表,这个 ...
- Leetcode22.Generate Parentheses括号生成
给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合. 例如,给出 n = 3,生成结果为: [ "((()))", "(()())& ...