左偏树 (bzoj 2809)
Description
Input
Output
Sample Input
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
Sample Output
#include<cstdio>
#include<algorithm>
#include<math.h>
#include<string.h>
using namespace std;
typedef long long ll;
const ll maxn=1e5+;
ll c[maxn],val[maxn];
ll limit;
ll f[maxn],dis[maxn];
ll ch[maxn][];
ll sumlimit[maxn];
ll sumsize[maxn];
ll ans;
struct node
{
ll v,next;
}G[maxn]; ll head[maxn];ll num=-;
void build(ll u,ll v)
{
G[++num].v=v;G[num].next=head[u];head[u]=num;
}
ll Merge(ll x,ll y)
{
if(!x||!y) return x+y;
if(c[x]<c[y]) swap(x,y);
ch[x][]=Merge(ch[x][],y);
f[ch[x][]]=x;
if(dis[ch[x][]]<dis[ch[x][]]) swap(ch[x][],ch[x][]);
dis[x]=dis[ch[x][]]+;
return x;
}
void dfs(ll u)
{
for(ll i=head[u];i!=-;i=G[i].next){
ll v=G[i].v;
dfs(v);
sumlimit[u]+=sumlimit[v];
sumsize[u]+=sumsize[v];
f[u]=Merge(f[u],f[v]);
}
f[u]=Merge(f[u],u);
sumlimit[u]+=c[u];
sumsize[u]++;
while(sumlimit[u]>limit){
sumlimit[u]-=c[f[u]];
sumsize[u]--;
f[u]=Merge(ch[f[u]][],ch[f[u]][]);
}
ans=max(ans,1ll*sumsize[u]*val[u]);
return; }
int main()
{
ll n;
memset(head,-,sizeof(head));
scanf("%lld%lld",&n,&limit);
for(ll i=;i<=n;i++){
ll u;
scanf("%lld%lld%lld",&u,&c[i],&val[i]);
build(u,i);
}
dfs();
printf("%lld\n",ans);
return ;
}
左偏树 (bzoj 2809)的更多相关文章
- BZOJ 2809: [Apio2012]dispatching(左偏树)
http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...
- bzoj 2809 左偏树\平衡树启发式合并
首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...
- 【BZOJ 2809】2809: [Apio2012]dispatching (左偏树)
2809: [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Maste ...
- 【BZOJ】2809: [Apio2012]dispatching(左偏树)
题目 传送门:QWQ 分析 显然是一个资瓷合并的堆 现学了一发左偏树:教程 然后就没了 代码 #include <bits/stdc++.h> #define lc son[x][0] # ...
- BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...
- BZOJ 1455 罗马游戏 ——左偏树
[题目分析] 左偏树的模板题目,大概就是尽量维护树的深度保持平衡,以及尽可能的快速合并的一种堆. 感觉和启发式合并基本相同. 其实并没有快很多. 本人的左偏树代码自带大常数,借鉴请慎重 [代码] #i ...
- bzoj 1455: 罗马游戏 左偏树+并查集
1455: 罗马游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 668 Solved: 247[Submit][Status] Descriptio ...
- 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)
1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...
- BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...
- 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)
1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...
随机推荐
- 【巨杉数据库SequoiaDB】SequoiaDB 巨杉数据库 v3.4 版本正式发布
深秋时节,SequoiaDB 巨杉数据库在深秋给大家带来了“一把火”.SequoiaDB v3.4 正式发布啦! 分布式交易场景性能大幅提升 SequoiaDB 巨杉数据库3.4版本正式发布,v3.4 ...
- 目标检测,主要问题发展,非极大值抑制中阈值也作为参数去学习更满足end2end,最近发展趋势和主要研究思路方向
目标检测,主要问题发展,非极大值抑制中阈值也作为参数去学习更满足end2end,最近发展趋势和主要研究思路方向 待办 目标检测问题时间线 特征金字塔加滑窗 对象框推荐 回归算法回归对象框 多尺度检测 ...
- 项目部署到tomcat,验证部署成功
1.假设你已经知道打war包放上去了tomcat 下的webapps下 2. bin->启动startup.bat 3.浏览器中启动 http://ip:port 这个port是tomca ...
- Jmeter-简介及安装
一.Jmeter简介 Apache Jmeter 是Apache组织的开放源代码项目,是一个纯java桌面应用,用于压力测试和性能测量.它最初被设计用于Web应用测试但后来扩展到其它测试领域. Apa ...
- Jmeter-文件目录
Jmeter文件目录介绍 1.bin:可执行文件目录 (1)jmeter.bat:windows的启动文件 (2)jmeter.log:日志文件 (3)jmeter.sh:linux的启动文件 (4) ...
- SpringBoot整合WEB开发--(五)自定义错误页
目的与原理: 处理异常时,若我们想根据实际情况返回不同的页面,@ControllerAdvice与@ExceptionHandler,一般用于处理应用级别的异常,一些容器级别的错误就处理不了,例如Fi ...
- 洛谷P1086 花生采摘
https://www.luogu.org/problem/P1086 #include <bits/stdc++.h> using namespace std; typedef long ...
- 题解 P4289 【[HAOI2008]移动玩具】
题目地址:https://www.luogu.com.cn/problem/P4289 题解原地址:https://createsj.blog.luogu.org/solution-p4289 让我们 ...
- 通过恢复目录(Catalogue)进行PDB级别的PITR恢复
数据库版本:Oracle 12.2.0.1 本篇为<执行PDB的PITR恢复失败的说明 (文档 ID 2435452.1)>的证明篇,通过当前控制文件,无法在PDB级别进行PITR(Poi ...
- this.$nextTick
首先我们先来看看官方介绍的用法: 将回调延迟到下次 DOM 更新循环之后执行.在修改数据之后立即使用它,然后等待 DOM 更新. 它跟全局方法 Vue.nextTick 一样,不同的是回调的 this ...