Description

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。
1  ≤N ≤ 100,000 忍者的个数;
1  ≤M ≤ 1,000,000,000 薪水总预算;
0  ≤Bi < i  忍者的上级的编号;
1  ≤Ci ≤ M  忍者的薪水;
1  ≤Li ≤ 1,000,000,000 忍者的领导力水平。

Input

从标准输入读入数据。
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预算。
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0并且每一个忍者的老板的编号一定小于自己的编号 Bi < i

Output

输出一个数,表示在预算内顾客的满意度的最大值。

Sample Input

5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

Sample Output

6
 
这道题找不到oj  不过自己打了一遍,然后运行不过,想着写了也没oj评判,所以也就没打了,以下是别人的代码;
思路:题目能保证这只是一棵树,在遍历的时候,就是普通的深搜方式。
每一次合并操作,都是父节点与子节点之间,因此也不需要getf去寻找祖先了,直接进行合并操作,然后更改其父亲是谁即可;
这道题有一种动态规划的感觉,从少到大,从最低端的开始枚举,枚举之后,可能会出现大于m的情况,便剔除最大值。(本题为最大堆);
而这些被剔除的值,是不会影响其父节点的操作的,因为假如再将这些点归位,父节点也会出现大于m的情况,也要将其剔除,
最后在每一次深搜的时候更新ans的权值即可。
 #include<cstdio>
#include<algorithm>
#include<math.h>
#include<string.h>
using namespace std;
typedef long long ll;
const ll maxn=1e5+;
ll c[maxn],val[maxn];
ll limit;
ll f[maxn],dis[maxn];
ll ch[maxn][];
ll sumlimit[maxn];
ll sumsize[maxn];
ll ans;
struct node
{
ll v,next;
}G[maxn]; ll head[maxn];ll num=-;
void build(ll u,ll v)
{
G[++num].v=v;G[num].next=head[u];head[u]=num;
}
ll Merge(ll x,ll y)
{
if(!x||!y) return x+y;
if(c[x]<c[y]) swap(x,y);
ch[x][]=Merge(ch[x][],y);
f[ch[x][]]=x;
if(dis[ch[x][]]<dis[ch[x][]]) swap(ch[x][],ch[x][]);
dis[x]=dis[ch[x][]]+;
return x;
}
void dfs(ll u)
{
for(ll i=head[u];i!=-;i=G[i].next){
ll v=G[i].v;
dfs(v);
sumlimit[u]+=sumlimit[v];
sumsize[u]+=sumsize[v];
f[u]=Merge(f[u],f[v]);
}
f[u]=Merge(f[u],u);
sumlimit[u]+=c[u];
sumsize[u]++;
while(sumlimit[u]>limit){
sumlimit[u]-=c[f[u]];
sumsize[u]--;
f[u]=Merge(ch[f[u]][],ch[f[u]][]);
}
ans=max(ans,1ll*sumsize[u]*val[u]);
return; }
int main()
{
ll n;
memset(head,-,sizeof(head));
scanf("%lld%lld",&n,&limit);
for(ll i=;i<=n;i++){
ll u;
scanf("%lld%lld%lld",&u,&c[i],&val[i]);
build(u,i);
}
dfs();
printf("%lld\n",ans);
return ;
}

左偏树 (bzoj 2809)的更多相关文章

  1. BZOJ 2809: [Apio2012]dispatching(左偏树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...

  2. bzoj 2809 左偏树\平衡树启发式合并

    首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...

  3. 【BZOJ 2809】2809: [Apio2012]dispatching (左偏树)

    2809: [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Maste ...

  4. 【BZOJ】2809: [Apio2012]dispatching(左偏树)

    题目 传送门:QWQ 分析 显然是一个资瓷合并的堆 现学了一发左偏树:教程 然后就没了 代码 #include <bits/stdc++.h> #define lc son[x][0] # ...

  5. BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)

    这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...

  6. BZOJ 1455 罗马游戏 ——左偏树

    [题目分析] 左偏树的模板题目,大概就是尽量维护树的深度保持平衡,以及尽可能的快速合并的一种堆. 感觉和启发式合并基本相同. 其实并没有快很多. 本人的左偏树代码自带大常数,借鉴请慎重 [代码] #i ...

  7. bzoj 1455: 罗马游戏 左偏树+并查集

    1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 668  Solved: 247[Submit][Status] Descriptio ...

  8. 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)

    1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...

  9. BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆

    https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...

  10. 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)

    1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...

随机推荐

  1. 请求 - axios

    实际应用示例 前端不需要做统一的接口防重 前端无法通过判断接口是否返回来释放按钮(因为可以手动刷新页面,将导致刷新前请求丢失) 后端对接口做了防重 通过增加时间戳避免IE9的get请求缓存问题 axi ...

  2. Vuejs+elementUI项目,在进行打包时,要注意的问题

    注意:打包之前,需要注意修改一些地方 (1)若是前后端分离开发的,前端开发过程中可能会在api.js中设置访问路径为服务器所在电脑的ip:端口,打包前,最好将它改回localhost:8080 (2) ...

  3. linux命令解压压缩rar文件的详细步骤

    参考文件:https://www.cnblogs.com/qinglin/p/9007939.html

  4. [转]JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释

    jvm区域总体分两类,heap区和非heap区.heap区又分:Eden Space(伊甸园).Survivor Space(幸存者区).Tenured Gen(老年代-养老区). 非heap区又分: ...

  5. python3练习100题——030

    这周开始,要重新振作一点吧! 如果每天都想着消费升级,而不是想着如何投入时间精力让自己进步,未来根本就看不到希望. 我想要更认真的活着 live wild 原题链接:http://www.runoob ...

  6. Docker之设置加速器

    在Docker从仓库下载镜像是非常慢的,所以今天搞一个Docker设置加速器教程. 1. 创建一个Docker的配置文件. sudo vim /etc/docker/daemon.json 2. 编写 ...

  7. Spring整合MyBatis案例练习笔记

    需求: 用户登录 技术需求: Servlet+Spring+Mybatis+MVC+jsp+css+html+jquery 数据库设计: 用户表 Sql语句设计: select * from t_us ...

  8. Java注释&标识符

    注释: 单行注释:// 多行注释:/*   */ 文档注释:/**  */ 其中文档注释可以Export导出dox文档,常用Javadox标记如下: @author:指定Java程序的作者 @vers ...

  9. api接口出现Provisional headers are shown,

    问题分析:根据反馈可以知道,发起请求,但服务器未及时响应,原因可能是超时,或者被拦截

  10. AcWing 891. Nim游戏

    //a1 ^ a2 ^ ··· ^ an = 0 –>先手必败: //a1 ^ a2 ^ ··· ^ an != 0 –>先手必胜: #include<iostream> us ...