左偏树 (bzoj 2809)
Description
Input
Output
Sample Input
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
Sample Output
#include<cstdio>
#include<algorithm>
#include<math.h>
#include<string.h>
using namespace std;
typedef long long ll;
const ll maxn=1e5+;
ll c[maxn],val[maxn];
ll limit;
ll f[maxn],dis[maxn];
ll ch[maxn][];
ll sumlimit[maxn];
ll sumsize[maxn];
ll ans;
struct node
{
ll v,next;
}G[maxn]; ll head[maxn];ll num=-;
void build(ll u,ll v)
{
G[++num].v=v;G[num].next=head[u];head[u]=num;
}
ll Merge(ll x,ll y)
{
if(!x||!y) return x+y;
if(c[x]<c[y]) swap(x,y);
ch[x][]=Merge(ch[x][],y);
f[ch[x][]]=x;
if(dis[ch[x][]]<dis[ch[x][]]) swap(ch[x][],ch[x][]);
dis[x]=dis[ch[x][]]+;
return x;
}
void dfs(ll u)
{
for(ll i=head[u];i!=-;i=G[i].next){
ll v=G[i].v;
dfs(v);
sumlimit[u]+=sumlimit[v];
sumsize[u]+=sumsize[v];
f[u]=Merge(f[u],f[v]);
}
f[u]=Merge(f[u],u);
sumlimit[u]+=c[u];
sumsize[u]++;
while(sumlimit[u]>limit){
sumlimit[u]-=c[f[u]];
sumsize[u]--;
f[u]=Merge(ch[f[u]][],ch[f[u]][]);
}
ans=max(ans,1ll*sumsize[u]*val[u]);
return; }
int main()
{
ll n;
memset(head,-,sizeof(head));
scanf("%lld%lld",&n,&limit);
for(ll i=;i<=n;i++){
ll u;
scanf("%lld%lld%lld",&u,&c[i],&val[i]);
build(u,i);
}
dfs();
printf("%lld\n",ans);
return ;
}
左偏树 (bzoj 2809)的更多相关文章
- BZOJ 2809: [Apio2012]dispatching(左偏树)
http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...
- bzoj 2809 左偏树\平衡树启发式合并
首先我们对于一颗树,要选取最多的节点使得代价和不超过m,那么我们可以对于每一个节点维护一个平衡树,平衡树维护代价以及代价的和,那么我们可以在logn的时间内求出这个子树最多选取的节点数,然后对于一个节 ...
- 【BZOJ 2809】2809: [Apio2012]dispatching (左偏树)
2809: [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Maste ...
- 【BZOJ】2809: [Apio2012]dispatching(左偏树)
题目 传送门:QWQ 分析 显然是一个资瓷合并的堆 现学了一发左偏树:教程 然后就没了 代码 #include <bits/stdc++.h> #define lc son[x][0] # ...
- BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...
- BZOJ 1455 罗马游戏 ——左偏树
[题目分析] 左偏树的模板题目,大概就是尽量维护树的深度保持平衡,以及尽可能的快速合并的一种堆. 感觉和启发式合并基本相同. 其实并没有快很多. 本人的左偏树代码自带大常数,借鉴请慎重 [代码] #i ...
- bzoj 1455: 罗马游戏 左偏树+并查集
1455: 罗马游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 668 Solved: 247[Submit][Status] Descriptio ...
- 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)
1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...
- BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...
- 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)
1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...
随机推荐
- Python元组详解
元组的特征 元组类型的名字是tuple 元组的一级元素不可被修改.不能增加或者删除: 元组和列表的书写区别是将中括号改成了小括号: 为方便区分元组和普通方法的参数,一般在元组的最后一个元素后保持加一个 ...
- 题解【AcWing487】金明的预算方案
题面 有依赖的背包问题模板题. 我们观察到 每个主件可以有 0 个.1 个或 2 个附件 , 于是考虑对于每一个主件,我们用枚举子集的方式枚举使用哪一些附件, 然后就是一个经典的分组背包问题了. 注意 ...
- C# Enumerable
使用Enumerable.Range 打印数字0到9 static void Main(string[] args) { , ); //Range方法获取两个int参数:一个起始数,一个是要生成的结果 ...
- Docker最全教程——从理论到实战(九)
使用Tencent Hub来完成CI 关于Tencent Hub Tencent Hub是腾讯出品的DevOps服务.主要提供多存储格式的版本管理,支持Docker Image.Binary.Helm ...
- 颜色color转为rgb格式
function convertHexToRGB(color) { if (color.length === 4) { let extendedColor = &q ...
- Eclipse导入工程Some projects cannot be imported because they already exist in the workspace
记录一下本次出错原因,以及解决方法 错误原因: 第一次导入后,删除工程,没有没有勾选Delete project contents on disk(cannot be undone) 解决方法: 1 ...
- Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box
#include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...
- 浏览器缓存信息(Autocomplete )
Autocomplete HTML Attribute Not Disabled for Password Field 漏洞详细Web系统被识别到支持自动完成功能,这样通过浏览器可以获取到敏感信息. ...
- eclipse 设置不弹出debug调试框
- [一本通学习笔记] AC自动机
AC自动机可以看作是在Trie树上建立了fail指针,在这里可以看作fail链.如果u的fail链指向v,那么v的对应串一定是u对应串在所给定字符串集合的后缀集合中的最长的后缀. 我们考虑一下如何实现 ...