正解:网络流

解题报告:

传送门$QwQ$

昂第一问跑个最大流就成不说$QwQ$

然后第二问,首先原来剩下的边就成了费用为0的边?然后原来的所有边连接的两点都给加上流量为$inf$费用为$w$的边,保证流量等于$k$就给$S$向一号节点连流量为$k$费用为0的边就好,,,

感$jio$这题有点儿简单,,,所以为什么是紫昂洛谷评分好迷昂$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define t(i) edge[i].to
#define n(i) edge[i].nxt
#define w(i) edge[i].wei
#define fy(i) edge[i].fy
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define e(i,x) for(ri i=head[x];~i;i=n(i)) const int N=+,M=+,inf=1e9;
int head[N],ed_cnt=-,S,T,dep[N],cur[N],dis[N],fr_nod[N],fr_ed[N],cost,n,m,K,x[M],y[M],w[M],f[M];
bool vis[N];
struct ed{int to,nxt,wei,fy;}edge[M<<]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z,ri p)
{edge[++ed_cnt]=(ed){x,head[y],z,p};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],,-p};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty()){ri nw=Q.front();Q.pop();e(i,nw)if(w(i) && !dep[t(i)])dep[t(i)]=dep[nw]+,Q.push(t(i));}
return dep[T];
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=n(i))
if(w(i) && dep[t(i)]==dep[nw]+)
{ri tmp=dfs(t(i),min(flow,w(i)));flow-=tmp,w(i)-=tmp,w(i^)+=tmp,ret+=tmp;}
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;}
il bool spfa()
{
queue<int>Q;Q.push(S);memset(dis,,sizeof(dis));dis[S]=;vis[S]=;
while(!Q.empty())
{
ri nw=Q.front();Q.pop();vis[nw]=;
e(i,nw)
{
if(w(i) && fy(i)+dis[nw]<dis[t(i)])
{dis[t(i)]=dis[nw]+fy(i);fr_nod[t(i)]=nw;fr_ed[t(i)]=i;if(!vis[t(i)])Q.push(t(i)),vis[t(i)]=;}
}
}
if(dis[T]==dis[T+])return ;
ri flow=dis[T+];
for(ri i=T;i!=S;i=fr_nod[i])flow=min(flow,w(fr_ed[i]));
for(ri i=T;i!=S;i=fr_nod[i])w(fr_ed[i])-=flow,w(fr_ed[i]^)+=flow;
cost+=flow*dis[T];return ;
} int main()
{
freopen("2604.in","r",stdin);freopen("2604.out","w",stdout);
memset(head,-,sizeof(head));n=read();m=read();K=read();S=;T=n;
rp(i,,m){x[i]=read(),y[i]=read(),w[i]=read(),f[i]=read();ad(y[i],x[i],w[i],);}
printf("%d ",dinic());S=;rp(i,,m)ad(y[i],x[i],K,f[i]);ad(,S,K,);
while(spfa());
printf("%d\n",cost);
return ;
}

洛谷$P2604\ [ZJOI2010]$网络扩容 网络流的更多相关文章

  1. 洛谷 P2604 [ZJOI2010]网络扩容 解题报告

    P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...

  2. [洛谷P2604][ZJOI2010]网络扩容

    题目大意:给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小费用. 题解 ...

  3. 洛谷 P2604 [ZJOI2010]网络扩容

    题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. ...

  4. 【题解】Luogu P2604 [ZJOI2010]网络扩容

    原题传送门:P2604 [ZJOI2010]网络扩容 这题可以说是板题 给你一个图,先让你求最大流 再告诉你,每条边可以花费一些代价,使得流量加一 问至少花费多少代价才能使最大流达到k 解法十分简单 ...

  5. bzoj1834 网络扩容 网络流

    好久没写题解了啊··· 题目大意: 给你一幅n个点的网络,先求出其1到n的最大流,每条弧还会有个属性\(cost_i\),表示没扩容一个单位的费用,现在我们要求的就是扩容K个单位的最小费用 思路: 这 ...

  6. BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)

    题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...

  7. P2604 [ZJOI2010]网络扩容

    思路 简单的费用流问题,跑出第一问后在残量网络上加边求最小费用即可 代码 #include <cstdio> #include <algorithm> #include < ...

  8. 【BZOJ】【1834】【ZJOI2010】Network 网络扩容

    网络流/费用流 这题……我一开始sb了. 第一问简单的最大流…… 第二问是要建费用流的图的……但是是在第一问的最大流跑完以后的残量网络上建,而不是重建…… 我们令残量网络上原有的弧的费用全部为0(因为 ...

  9. 【bzoj1834】[ZJOI2010]network 网络扩容

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2701  Solved: 1368[Submit ...

随机推荐

  1. C++构造函数和文件组织

    构造你的函数 在 main() 上方声明函数,并在 main 下方定义函数 在 main() 上方同时声明并定义函数. 随着 C++ 程序变得越来越复杂,你可能需要将代码分成多个文件.分开保存函数定义 ...

  2. 安装visualStudio 出现 cant install Microsoft.TeamFoundation.OfficeIntegration.Resources

    本文告诉大家在安装 VisualStudio 时出现cant install Microsoft.TeamFoundation.OfficeIntegration.Resources如何安装 如果在安 ...

  3. 容器服务kubernetes federation v2实践五:多集群流量调度

    概述 在federation v2多集群环境中,通过前面几篇文章的介绍,我们可以很容易的进行服务多集群部署,考虑到业务部署和容灾需要,我们通常需要调整服务在各个集群的流量分布.本文下面简单介绍如何在阿 ...

  4. 给tomcat容器配置SSL的记录,包含项目完整部署过程

    给tomcat容器配置SSL(https) 昨天公司有一个旧的项目要部署, 服务器(OS是windows 10) 数据库都是新买的, 写个博客记录一下 1, 下载证书(以阿里云为例子) 参考链接: h ...

  5. HTML静态网页--JavaScript-Window.document对象

    1.Window.document对象 一.找到元素: docunment.getElementById("id"):根据id找,最多找一个:    var a =docunmen ...

  6. rsa加密(非对称加密)

    rsa加密 是非对称加密 需要公钥 与 私钥 这个公钥私钥的具体值需要与后端协商定下 rsa js代码如下 代码太多不插入了 html代码如下 <!DOCTYPE html> <ht ...

  7. KMPnext数组运用、最小循环节问题

    http://www.cnblogs.com/jackge/archive/2013/01/05/2846006.html http://www.cnblogs.com/wuyiqi/archive/ ...

  8. [转载] 虚拟机3种网络模式(NAT, Host-only, Bridged)

    实例讲解虚拟机3种网络模式(桥接.nat.Host-only) 转载自:http://www.cnblogs.com/ggjucheng/archive/2012/08/19/2646007.html ...

  9. border写一个直角三角形

    文章地址 https://www.cnblogs.com/sandraryan/ border的四条边是平分的.你可以放大试试 .box1 { width:;; border: 100px solid ...

  10. Python--day63--添加书籍和修改表结构的注意事项