题目描述

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

解法

还是非常典型的树链剖分。
操作\(1\):直接单点修改。
操作\(2\):区间修改,范围是\(idx[u]\)~\(idx[u]+sz[u]-1\)。
操作\(3\):典型错误,直接求区间\(1~idx[u]\),我们每一次能操作的只有一条重链,因为我们的根节点和访问节点不一定实在同一条重链上,所以需要每次跳一跳。

感想

有点小尬,打的时候一次数组开小了,第二次操作\(1\)和操作\(2\)打反了,有差一点去重构代码

[luogu3178][bzoj4034][HAOI2015]树上操作的更多相关文章

  1. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  2. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  3. bzoj4034: [HAOI2015]树上操作(树剖)

    4034: [HAOI2015]树上操作 题目:传送门 题解: 树剖裸题: 麻烦一点的就只有子树修改(其实一点也不),因为子树编号连续啊,直接改段(记录编号最小和最大) 开个long long 水模版 ...

  4. BZOJ4034 [HAOI2015]树上操作 树链剖分

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...

  5. BZOJ4034: [HAOI2015]树上操作

    这题把我写吐了...代码水平还是太弱鸡了啊... 这题就是先给你一些点,以及点权.然后给你一些向边构成一颗树,树的根节点是1. 然后给定三个操作 第一个是把指定节点的权值+W 第二个是把指定节点X为根 ...

  6. BZOJ4034[HAOI2015]树上操作——树链剖分+线段树

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...

  7. [bzoj4034][HAOI2015]树上操作——树状数组+dfs序

    Brief Description 您需要设计一种数据结构支持以下操作: 把某个节点 x 的点权增加 a . 把某个节点 x 为根的子树中所有点的点权都增加 a . 询问某个节点 x 到根的路径中所有 ...

  8. BZOJ4034 [HAOI2015]树上操作+DFS序+线段树

    参考:https://www.cnblogs.com/liyinggang/p/5965981.html 题意:是一个数据结构题,树上的,用dfs序,变成线性的: 思路:对于每一个节点x,记录其DFS ...

  9. bzoj4034 [HAOI2015]树上操作——树链剖分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4034 树剖裸题: 一定要注意 long long !!! update 的时候别忘了 pus ...

随机推荐

  1. Luogu P2312 解方程

    据大佬的说法这种大力乱搞题出在除NOIp以外的任何比赛都是很好的然而就是被出在了NOIp 首先对于想直接上高精的同学,我还是祝你好运吧. 我们考虑一个十分显然的性质,若\(a=b\),则对于任一自然数 ...

  2. QZEZ第一届“饭吉圆”杯程序设计竞赛

    终于到了饭吉圆杯的开赛,这是EZ我参与的历史上第一场ACM赛制的题目然而没有罚时 不过题目很好,举办地也很成功,为法老点赞!!! 这次和翰爷,吴骏达 dalao,陈乐扬dalao组的队,因为我们有二个 ...

  3. .NET Core在类库中读取配置文件appsettings.json

    在.NET Framework框架时代我们的应用配置内容一般都是写在Web.config或者App.config文件中,读取这两个配置文件只需要引用System.Configuration程序集,分别 ...

  4. 【下一代核心技术DevOps】:(二)Rancher的应用及优点简介

    1.环境选择 安装Rancher环境,一定要在干净的linux主机上进行,避免出现因配置导致的莫名其妙的问题.服务器操作系统建议CentOS7.4(内核3.10以上)低于这个版本的系统 如7.3 7. ...

  5. ZooKeeper 典型的应用场景——及编程实现

    如何使用 Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储,但是 Zookeeper 并不是用来专门存储 ...

  6. mariadb第二章-增删改

    MariaDB 数据类型 MariaDB数据类型可以分为数字,日期和时间以及字符串值. 使用数据类型的原则:够用就行, 尽量使用范围小的,而不用大的 常用的数据类型 整数:int, bit 小数:de ...

  7. <a>标签中href="javascript:;"** 为什么 style不用src**

    &src/href <!--href 用于标示资源和文档关系,src 用于替换标签内容--> <img src="xxx.jpg"/> <sc ...

  8. 代码规范与复审2——个人博客作业week

    一.关于编程规范的重要性论证 1.不支持. 1)编程规范有利于自己提高编程效率和编程质量.编码是程序员的职责,一个好的信息技术产品必然有高质量的代码,高质量的代码首先 一点它必须遵守某种编程规范.如果 ...

  9. 素数问题三步曲_HDOJ2098

    偶然间OJ上敲到一题素数问题便查询了相关算法.对于该类问题我个人学习分为三步曲:最笨的方法(TLE毫无疑问)->Eratosthrnes筛选法->欧拉线性筛选法 针对HDOJ2098这道题 ...

  10. 自定义视图(SpringMVC)

    一.首先理解视图的解析过程 1)请求处理方法执行完成后,最终返回一个 ModelAndView 对象. ModelAndView 对象,它包含了逻辑名(访问URL)和模型对象(javaBean数据)的 ...