题目大意:给定 N 个数字组成的序列,求刚好拥有所有 M 种数字的最短区间。

题解:双指针算法是一种对于暴力的优化算法,对于这道题来说,一个显然的暴力是:对于序列中每一个位置 pos,计算出这个位置右边恰好满足条件的位置 f[pos],时间复杂度为 \(O(n^2)\)。考虑对于每一个位置的计算位置,计算位置的值单调不降,因此,这就没有必要重复计算一些位置,直接扫描一遍即可统计出答案。因此,采用双指针扫描即可。

双指针算法的步骤如下:

  1. 未满足条件,则右端点不断向右扩展。
  2. 若仍不满足条件,则退出循环。
  3. 统计答案贡献。
  4. 左端点左移一个单位。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxm=2010;
const int maxn=1e6+10; int n,m,a[maxn],cnt[maxm]; void solve(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
int len=n+1,x,y;
for(int l=1,r=1,now=0;;){
while(r<=n&&now<m)now+=!cnt[a[r++]]++;
if(now<m)break;
if(len>r-l)len=r-l,x=l,y=r-1;
now-=!--cnt[a[l++]];
}
printf("%d %d\n",x,y);
} int main(){
solve();
return 0;
}

【洛谷P1638】逛画展的更多相关文章

  1. [洛谷P1638]逛画展

    [洛谷P1638]逛画展 题目大意: 有\(n(n\le10^6)\)个格子,每个格子有一种颜色.颜色种数为\(m(m\le2000)\).求包含所有颜色的最小区间. 思路: 尺取法裸题. 思路: # ...

  2. 洛谷 P1638 逛画展 题解

    P1638 逛画展 题目描述 博览馆正在展出由世上最佳的 M 位画家所画的图画. wangjy想到博览馆去看这几位大师的作品. 可是,那里的博览馆有一个很奇怪的规定,就是在购买门票时必须说明两个数字, ...

  3. 洛谷P1638 逛画展 题解 尺取法/双指针/队列

    题目链接:https://www.luogu.com.cn/problem/P1638 题目大意: 给你一个长度为 \(n (\le 10^6)\) 的数组,数组中每个元素的范围在 \(1\) 至 \ ...

  4. 洛谷P1638逛画展

    传送门啦 只需记录满足条件的一个区间的初始端点 $ (head, tail) $ ,不断删掉左端点 $ head $ ,不断更新右端点 $ tail $ : 开一个 $ vis[] $ 记录一下每幅画 ...

  5. 洛谷P1638 逛画展 (尺取法)

    尺取法的经典题目: 博览馆正在展出由世上最佳的 mm 位画家所画的图画. 游客在购买门票时必须说明两个数字,aa 和 bb,代表他要看展览中的第 aa 幅至第 bb 幅画(包含 a,ba,b)之间的所 ...

  6. 洛谷P3953 逛公园(NOIP2017)(最短/长路,拓扑排序,动态规划)

    洛谷题目传送门 又是一年联赛季.NOIP2017至此收官了. 这个其实是比较套路的图论DP了,但是细节有点恶心. 先求出\(1\)到所有点的最短路\(d1\),和所有点到\(n\)的最短路\(dn\) ...

  7. 洛谷 P1053 逛公园 解题报告

    P3953 逛公园 问题描述 策策同学特别喜欢逛公园. 公园可以看成一张\(N\)个点\(M\)条边构成的有向图,且没有自环和重边.其中1号点是公园的入口,\(N\)号点是公园的出口,每条边有一个非负 ...

  8. 洛谷P3953逛公园

    题目 作为\(NOIp2017D1T3\) 这个题还是很良心的,至少相对于\(NOIp2018\)来说,希望\(NOIp2019\)不会这么坑吧. 这个题可以作为记忆化搜索的进阶题了,做这个题的方法也 ...

  9. P1638 逛画展(直尺法)

    这道题是直尺法的模板题: #include<iostream> using namespace std; ; ; int n, m, a[maxn], vis[M]; int main() ...

随机推荐

  1. Mycat读写分离、主从切换、分库分表的操作记录

    系统开发中,数据库是非常重要的一个点.除了程序的本身的优化,如:SQL语句优化.代码优化,数据库的处理本身优化也是非常重要的.主从.热备.分表分库等都是系统发展迟早会遇到的技术问题问题.Mycat是一 ...

  2. 回顾:前端模块化和AMD、CMD规范(全)

    先列举下一些著名言论: "我想定义一个 each 方法遍历对象,但页头的 util.js 里已经定义了一个,我的只能叫 eachObject 了,好无奈." "Requi ...

  3. CF367C. Hard problem

    链接[http://codeforces.com/group/1EzrFFyOc0/contest/706/problem/C] 题意: 他希望它们按词典顺序排序(就像字典中那样),但他不允许交换其中 ...

  4. oracle数据库添加新用户

    /*分为四步 */ /*第1步:创建临时表空间 */ create temporary tablespace kmyf_temp tempfile 'E:\app\pangxy\product\11. ...

  5. idea使用优化

    一.idea设置目录说明 1.bin目录包含我们的启动文件.虚拟机配置信息和idea属性信息等 2.help目录:帮助文档 3.jre64 : idea自带的jre环境 4.lib:idea所依赖的类 ...

  6. 小学四则运算APP 最后阶段

    团队成员:陈淑筠.杨家安.陈曦 团队选题:小学四则运算APP 这次发布的是我们APP的最终版本!图片背景有根据用户需求改变!还增加了草稿纸运算的画布功能! 运行结果如下: package com.ex ...

  7. [福大软工] Z班 评测作业对应表

    学号 测试组号 011500908 8 031501102 3 031501118 8 031502106 6 031502109 9 031502113 3 031502142 2 03150220 ...

  8. jQuery中click事件多次触发解决方案

    jQuery 中元素的click事件中绑定其他元素的click事件. 因为jQuery中的click事件会累计绑定,导致事件注册越来越多. 解决方案: 1.能够避开,避免把click事件绑定到其他元素 ...

  9. 微信内置浏览器在使用video标签时(安卓)默认全屏的原因及解决办法

    根据X5论坛得到的答案是:设计如此. 腾讯真是越来越嚣张了,一家独大后用户体验都不注重了(不给程序员留活路). 听说有个申请加入vdeo白名单的,域名验证后就可以解决默认全屏(反正我是没见过申请入口, ...

  10. Spring 入门知识点笔记整理

    一.Spring 概述 1. 什么是spring? Spring 是个java企业级应用的开源开发框架.Spring主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Sprin ...